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Structural Response of Reinforced Concrete Frames Subjected to Explosions 

Master of Science Thesis in the Master’s Programme Structural Engineering and 

Building Technology  

JOANNA KLOREK 

ANNA SANDBERG 

Department of Civil and Environmental Engineering 

Division of Structural Engineering 

Concrete Structures  

Chalmers University of Technology 

ABSTRACT 

The knowledge of the response of reinforced concrete structures subjected to 

explosions and impulse load is limited. The design methodology is often simplified 

and there is a great need for further investigations within this subject. This Master’s 

Thesis is a continuation of several previous Master’s Theses and part of a long time 

project carried out as collaboration between Chalmers, the Swedish Civil 

Contingencies Agency (MSB) and Reinertsen.  

A parametric beam study is carried out in order to investigate the important 

parameters for impulse loaded structures. Depending on how the effective depth is 

interpreted in Eurocode 2, CEN (2004), the deformation capacity of the structure will 

differ, which is investigated. It is proved that for most cases it can be considered 

conservative to neglect the top reinforcement and to calculate the effective depth as 

the distance between the top of the beam to the centre of gravity of the bottom 

reinforcement.  

The main focus of this report is on structures composed of a few members, such as 

frame structures, which are investigated both in 2D and 3D finite element (FE) 

analysis, considered to present the reality in a sufficient degree. The analysed 

structures with infinite number of degrees of freedom are transformed into single 

degree of freedom (SDOF) systems in order to simplify the analysis. The SDOF 

system is created in Matlab R2013a and checked using hand calculation methods and 

more detailed numerical methods based on the central difference method.   

The 2D analysis focuses on the response models of the structures. Both the local 

model of the front column of the frame and the global model of the whole frame has 

proved to have trilinear response models. This results in that the first sway of the 

structure have a higher magnitude than the following sways for the elasto-plastic case. 

It is also proved that the interaction between the local and global model may increase 

the total plastic deformation of the frame.  

In the 3D analysis a comparison is done between applying the impulse load directly 

on the front column of the frame, and applying the load on the wall and transferring it 

to the column by the reaction forces of the wall. A parametric study is done in order to 

investigate the influence of the walls structural properties. It is proven that applying 

the load directly on the column is conservative compared to the 3D FE analysis. 

However, the relative properties of the wall and column have a large influence on the 

results. 

Key words: Explosion impulse load, reinforced concrete, SDOF, frame structure, 

elastic, elasto-plastic, 3D analysis, finite element analysis, dynamic 
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Strukturell respons för ramar i armerad betong utsatta för explosioner 

Examensarbete inom Structural Engineering and Building Technology 

JOANNA KLOREK 

ANNA SANDBERG 

Institutionen för bygg- och miljöteknik 

Avdelningen för konstruktionsteknik 

Betongbyggnad 

Chalmers tekniska högskola 

SAMMANFATTNING 

Kunskapen om hur armerade betongkonstruktioner reagerar på explosions-last är 

begränsad. Design-metodiken förenklas ofta och det finns ett stort behov av vidare 

efterforskningar inom området. Detta examensarbete är en fortsättning på flera 

tidigare examensarbeten samtidigt som det är en del av ett större samarbete mellan 

Chalmers, Myndigheten för Samhällsskydd och beredskap (MSB) och Reinertsen.  

En parametrisk studie har utförts för att undersöka vilka som är de viktigaste 

parametrarna för konstruktioner utsatta för impulslast. Beroende på hur den effektiva 

höjden tolkas erhålls olika plastiska rotationskapaciteter från Eurocode 2, vilket också 

undersöks. Studien visar att det för de flesta studerade fall kan anses konservativt att 

försumma topp-armeringen samt att beräkna den effektiva höjden som avståndet 

mellan botten-armeringen och toppen på balken.   

Examensarbetets huvudfokus ligger på sammansatta konstruktioner, så som ramverk, 

vilka undersöks i både 2D och 3D finita element (FE) analyser vilka anses 

representera verkligheten i tillräcklig utsträckning. De analyserade strukturerna, som 

har oändligt många frihetsgrader, förenklas till enfrihetsgradssystem (SDOF-system). 

SDOF-systemen programmeras i Matlab R2013a och kontrolleras med enkla 

handberäkningar samt mer detaljerade numeriska metoder baserade på centrala 

differens-metoden.  

2D-analysen fokuserar på strukturernas respons-modeller. Både den lokala modellen 

av den främre pelaren samt den globala modellen av hela ramen har uppvisat tri-linjärt 

beteende. Detta har, för det elasto-plastiska fallet, visat sig resultera i en högre första 

deformations-topp jämfört med de efter-följande. Det har även visat sig att 

interaktionen mellan den lokala och globala modellen kan öka ramens plastiska 

deformation. 

I 3D-analysen görs en jämförelse mellan att applicera impulslasten direkt på ramens 

främre pelare och att applicera den på väggen som får föra lasten vidare till pelaren 

genom reaktionskrafter. En parametrisk studie utförs för att undersöka hur väggens 

styvhet och resistans påverkar resultaten. Studien visar att det är konservativt att 

applicera lasten direkt på pelaren jämfört med 3D FE analysen. Vidare har de relativa 

egenskaperna mellan väggen och pelaren stor påverkan på resultaten. 

Nyckelord: Explosion, impulslast, armerad betong, enfrihetsgradssystem, ramverk, 

elastisk, elasto-plastisk, 3D-analys, finit element analys, dynamisk  



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2013:87 III 

Contents 

ABSTRACT I 

SAMMANFATTNING II 

CONTENTS III 

PREFACE IX 

NOTATIONS X 

1 INTRODUCTION 1 

1.1 Background 1 

1.2 Method 1 

1.3 Limitations 1 

1.4 Aim 2 

1.5 Outline of report 2 

2 BACKGROUND THEORY 4 

2.1 References 4 

2.2 Explosions 4 

 Definition of explosion 4 2.2.1

 Idealized shock wave 4 2.2.2

 Strain rate due to a shock wave 5 2.2.3

 Blast load 6 2.2.4

 Wave propagation 7 2.2.5

2.3 Material response due to static load 9 
 Concrete 9 2.3.1

 Reinforcement 10 2.3.2

2.4 Structural response due to static load 11 
 Orientation 11 2.4.1

 Linear elastic model 11 2.4.2

 Ideal plastic model 13 2.4.3

 Elasto-plastic model 14 2.4.4

2.5 Plastic hinges and plastic rotation capacity 15 

 Theory of plastic hinges 15 2.5.1

 Definition of plastic rotation capacity 18 2.5.2

 Calculation method for plastic rotation capacity 20 2.5.3

2.6 Structural response of statically indeterminate structures 22 

2.7 Structural response due to impulse load 23 

 Difference between impulse and static load 23 2.7.1

 Force and Pressure 24 2.7.2

 Momentum, impulse and impulse intensity 24 2.7.3

 External work and energy 25 2.7.4

 Internal work and corresponding deformation 27 2.7.5

 Modification factors for impulse loads other than characteristic 30 2.7.6



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 IV 

 Essential parameters for impulse loaded structures 34 2.7.7

2.8 Equivalent static load 35 
 Introduction 35 2.8.1

 Elastic model 35 2.8.2

 Plastic model 35 2.8.3

 Elasto-plastic model 35 2.8.4

2.9 Transformation into SDOF system 36 
 Introduction to SDOF system concept 36 2.9.1

 Equation of motion 37 2.9.2

 Differential equation for equation of motion 38 2.9.3

3 PARAMETRIC BEAM STUDY 42 

3.1 Introduction 42 

3.2 Different interpretations of x/d 43 
 Case 1 43 3.2.1

 Case 2 44 3.2.2

 Case 3 45 3.2.3

3.3 Geometry and properties of the beam 45 
 Introduction 45 3.3.1

 Parameters studied 46 3.3.2

3.4 Results and comparisons 47 
 Orientation 47 3.4.1

 Resistance versus deformation capacity for Case 1 48 3.4.2

 Rotation capacity, internal work and resistance for Case 1 51 3.4.3

 Comparison of Case A and Case B 56 3.4.4

 Different interpretation of d for Case 2 60 3.4.5

3.5 Concluding remarks 63 

4 STRUCTURAL RESPONSE OF A 2D FRAME 64 

4.1 Introduction and method 64 

4.2 Geometry and properties of the studied frame 64 

4.3 Reflected impulse load 66 

4.4 Adaption of frame into SDOF system 67 

4.4.1 Introduction 67 
4.4.2 Local SDOF model 68 
4.4.3 Global SDOF model 72 
4.4.4 Combination of the global and local SDOF model 75 

4.5 Modelling in ADINA 76 

4.6 Results of the elastic model 78 
4.6.1 Local elastic model 78 
4.6.2 Global elastic model 79 
4.6.3 Combination of the local and global elastic model 80 

4.7 Results of the elasto-plastic model 83 
4.7.1 Local elasto-plastic model 83 



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2013:87 V 

4.7.2 Global elasto-plastic model 102 

4.7.3 Combination of the local and global elasto-plastic model 115 

4.8 Concluding remarks 117 

5 STRUCTURAL RESPONSE OF A 3D FRAME 119 

5.1 Introduction and method 119 

5.2 Geometry and properties 119 

5.3 Adaptation into SDOF system 121 
 SDOF model of the wall 121 5.3.1

 SDOF model of the front column 122 5.3.2

5.4 Application of impulse load 123 

 Introduction 123 5.4.1

 Direct application of load 124 5.4.2

 Delayed application of load 125 5.4.3

5.5 Modelling in ADINA 131 
 Introduction 131 5.5.1

 2D model 131 5.5.2

 3D model 132 5.5.3

5.6 Results and comparison 134 

 Elastic model 134 5.6.1

 Elasto-plastic model 151 5.6.2

 Comparison of elastic and elasto-plastic model 161 5.6.3

5.7 Parametric study 163 

 Orientation 163 5.7.1

 Elastic model 163 5.7.2

 Elasto-plastic model 175 5.7.3

5.8 Concluding remarks 185 

6 CONCLUSIONS 187 

6.1 Final comments 187 
 Parametric beam study 187 6.1.1

 Structural response of a 2D frame 187 6.1.2

 Structural response of a 3D frame 188 6.1.3

6.2 Further investigations 188 

7 REFERENCES 190 

APPENDIX A HAND CALCULATIONS 192 

 Introduction 192 A.1

 Deformations 192 A.2

 Stiffness and moment of inertia 192 A.3

 Moment resistance 193 A.4

A.4.1 Main concept 193 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 VI 

A.4.2 Section without top reinforcement 194 

A.4.3 Section with top reinforcement 195 

 Maximum deformation capacity 196 A.5

 Internal and external work 197 A.6

 Equivalent static load 198 A.7

APPENDIX B ADDITIONAL GRAPHS FOR PARAMETRIC BEAM STUDY 199 

 Introduction 199 B.1

B.1.1 Case 1 199 
B.1.2 Case 2 199 

 Resistance versus deformation for Case 1 200 B.2

 Plastic rotation capacity for Case 1 203 B.3

 Internal work for Case 1 205 B.4

 Internal resistance for Case 1 206 B.5

 Maximum plastic deformation for Case 1 208 B.6

 Sections with and without top reinforcement for Case 1 209 B.7

 Resistance versus deformation for Case 2 215 B.8

 Plastic rotation capacity for Case 2 221 B.9

 Internal work for Case 2 222 B.10

 Internal resistance for Case 2 224 B.11

 Maximum plastic deformation for Case 2 225 B.12

 Sections with and without top reinforcement for Case 2 227 B.13

APPENDIX C TRILINEAR STRUCTURAL RESPONSE MODELS 232 

 Introduction 232 C.1

 Ultimate moments and resistances for the local frame model 232 C.2

 Structure subjected to impulse load 234 C.3

 Structure subjected to a static load 237 C.4

APPENDIX D CENTRAL DIFFERENCE METHOD 240 

 Introduction 240 D.1

 Calculation method 240 D.2

 Response models 241 D.3

D.3.1 Introduction 241 

D.3.2 Elastic response model 242 
D.3.3 Bilinear elasto-plastic response model 242 
D.3.4 Trilinear elasto-plastic response model 243 

 



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2013:87 VII 

APPENDIX E HAND CALCULATIONS FOR 2D FRAME 246 

 Input data 246 E.1

 Global and local elastic frame models 249 E.2

E.2.1 Deformation 249 

 Local elasto-plastic frame model 251 E.3

E.3.1 Deformation 251 
E.3.2 Plastic deformation capacity 253 

APPENDIX F STUDY OF 3D STRUCTURE 255 

 Input data 255 F.1

F.1.1 Wall 255 

F.1.2 Front Column 257 

 Plastic deformation capacity of the front column 259 F.2

 Hand calculations of the dynamic reaction from the wall 261 F.3

 Verification of the SDOF models 262 F.4

F.4.1 Elastic model 262 
F.4.2 Elasto-plastic model 265 

 Support reactions in 3D FE analysis 266 F.5

F.5.1 Elastic response 266 

F.5.2 Elasto-plastic response 270 

APPENDIX G PARAMETRIC STUDY OF 3D STRUCTURE 275 

 Orientation 275 G.1

 Verification of SDOF model 275 G.2

G.2.1 Elastic response 275 
G.2.2 Elasto-plastic response 280 

 Comparison of deformation in SDOF and 3D FE analysis 281 G.3

G.3.1 Elastic response 281 
G.3.2 Elasto-plastic response 286 

 Reaction loads 288 G.4

G.4.1 Elastic response 288 

G.4.2 Elasto-plastic response 295 

 Comparison of delayed load in SDOF and 3D FE analysis 303 G.5

G.5.1 Elastic response 303 
G.5.2 Elasto-plastic response 304 

APPENDIX H INDATA FILES FOR ADINA 306 

 2D Frame with elasto-plastic material model 306 H.1

 3D Frame with elasto-plastic material model 308 H.2

 

  



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 VIII 

 

 



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2013:87 IX 

Preface 

In this study, impulse loaded reinforced concrete structures have been investigated 

with focus on frame structures. The work has been carried out between January and 

June 2013. The project was carried out at Reinertsen Sverige AB in Gothenburg and 

in collaboration with the Department of Civil and Environmental Engineering, 

Division of Structural Engineering, Concrete Structures, Chalmers University of 

Technology, Sweden. The project has been carried out with Ph.D. Morgan Johansson 

as supervisor and Senior Lecturer Joosef Leppänen as examiner.   

We would especially like to thank Morgan Johansson for his commitment to the work 

carried out in this Master’s Thesis. His engagement to the subject has made the 

analyses very interesting and motivating to perform. We also want to show our 

gratitude to our examiner at the Department of Structural Engineering, Joosef 

Leppänen, for cheering on the project and giving helpful feedback.  

Moreover, we want to express our gratitude to the staff at Reinertsen Sverige AB in 

Gothenburg for welcoming us to their office. Sebastian Andersson and Mattias 

Carlsson at Reinertsen Sverige AB have especially been very helpful throughout the 

project.  

Finally, we want to thank each other for all the hard work, learning outcomes and fun 

times during the work with this project. 

Gothenburg June 2013 

Joanna Klorek 

Anna Sandberg 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 X 

Notations 

Roman upper case letters 

A Area 

As Area of reinforcement 

B Roof span 

E Young’s modulus 

Ec Young’s modulus for concrete 

Es Young’s modulus for steel 

Ek Kinetic energy 

F External force 

F´ Impulse load acting on the wall length w 

Fc Force in concrete 

Fk Characteristic pressure load 

Fs Force in steel 

I Impulse, moment of inertia 

Ik Characteristic impulse 

L Length 

0L  Distance from plastic hinge to zero moment section 

M Moment 

Mcr Cracking moment 

Mrd Ultimate moment capacity 

Myd Moment capacity when yielding starts 

P Pressure 

P0 Ambient air pressure 

Ppeak Peak pressure load 

Ps
+
 Unreflected pressure load, positive phase 

R Internal resisting force, support reaction 

Rm Maximum internal resisting force 

Rmf Ultimate resistance at the support 

Rms Ultimate resistance in the field 

T Natural period 

Vrd Shear force 

W Amount of energy 

We External energy 

Wel Elastic section modulus 



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2013:87 XI 

Wi Internal energy 

Wk Kinetic energy 

Wpl Plastic section modulus 

Q Equivalent static load 

 

Roman lower case letters 

a  Acceleration, distance, length of middle line for slab 

b  Width of cross-section 

c  Damping  

c  Distance from the edge of the beam to the centre of reinforcement 

1c  Concrete cover 

d  Effective depth of cross-section 

f  Frequency 

ccf  Concrete compressive strength 

cdf  Design value of concrete compressive strength 

suf  Ultimate reinforcement strenght 

syf  Yield stress for reinforcement 

ydf  Characteristic value of yield stress 

ykf  Design value of yield stress 

h  Height of cross-section 

i  Impulse intensity 

k  Stiffness 

k  Multiplying factor for allowed rotation capacity 

pll  Extension length of plastic hinge 

m  Mass 

n  Total number 

p  Momentum 

q  Distributed load 

crq  Distributed crack load 

rdq  Distributed load when ultimate capacity is reached 

ydq  Distributed load when yielding starts 

r  Detonation distance, radius of curvature 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 XII 

s  Column spacing, reinforcement bar spacing 

t  Time 

at  Arrival time 

1t  Load duration  

elt  Time when maximum uel is reached in elasto-plastic model 

maxt  Time for which umax is reached 

peakt  Time for which pressure load reaches maximum value Ppeak 

u  Displacement 

u  Velocity 

u  Acceleration 

elu  Elastic deformation 

epu  Elasto-plastic deformation 

el,epu  Elastic part of elasto-plastic deformation 

pl,epu  Plastic part of elasto-plastic defromation 

maxu  Maximum deformation 

plu  Plastic deformation 

rdu  Ultimate plastic deformation 

resu  Residual plastic deformation 

su  Displacement of system point 

sumu  Sum of global and local deformation 

w  Length of slab, length of wall section 

v  Velocity 

x  Lenght coordinate 

x  Height of compression zone 

cgx  Distance to centre of gravity 

ux  Height of compression zone in ULS 

z  Coordinate from neutral axis, internal lever arm for reinforcement 

 

Greek upper case letters 

  Incremental 

  Ratio between the reflected pressure and a shock wave 



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2013:87 XIII 

Greek lower case letters 

  Deformation relation factor 

  Ratio between Young's modulus for steel and concrete 

el  Displacement error for elastic response 

pl  Displacement error for plastic response 

  Strain 

c  Concrete strain 

cc  Concrete compressive strain 

ct  Concrete tensile strain 

cu  Ultimate concrete strain 

pl  Plastic strain 

acc.pl  Accumulated plastic strain 

s  Reinforcement strain 

sh  Reinforcement strain at hardening 

fsu,s  Reinforcement strain at the ultimate tensile stress fsu 

su  Ultimate reinforcement strain 

sy  Reinforcement strain when yielding begins 

  Bar diameter 

  Heat capacity ratio 

I  Impulse load factor 

F  Pressure load factor 

Rm  Ratio between Rm of beam with and without top reinforcement 

rdu  Ratio between urd of beam with and without top reinforcement 

iW  Ratio between Wi of beam with and without top reinforcement 

  Transformation factor 

F  Transformation factor for the external load 

k  Transformation factor for the internal force 

m  Transformation factor for the mass 

mF  Transformation factor for the mass and the external load 

  Wave length, shear slenderness 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 XIV 

pl  Plastic rotation capacity  

rev.pl  Plastic rotation capacity with regard to shear slenderness λ 

  Density, reinforcement amount 

  Stress 

c  Concrete stress 

cc  Concrete compressive stress 

ct  Concrete tensile stress 

s  Reinforcement stress 

y  Yield stress 

  Angular frequency 

 

Index 

  Indicates positive phase 

0  Initial position 

3,4,1,2  Numbering 

III,II,I  Indicate state I (uncracked), II (cracked), III (plastic) 

a  Indicates indata to FE program (ADINA) 

b  Bilinear 

ba  Indicates back column 

c  Indicates column 

cr  Cracking, indicates critical value 

d  Indicates decreased value 

dyn  Dynamic 

e  Equivalent 

el  Elastic 

ep  Elasto-plastic 

f  Indicates span 

fr  Indicates front column 

gl  Global 

i  Indicates increased value 

k  Characteristic 

l  Local 



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2013:87 XV 

mod  Indicates modified value 

pl  Plastic 

r  Indicates roof 

s  Indicates support 

sta  Static 

t  At time t , trilinear 

tot  Total 

u  Indicates ultimate value, indicates unchanged value 

w  Indicates wall 

x  Vertical direction 

y  Horizontal direction, yielding 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 XVI 

 

 

 

 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 1 

1  Introduction 

1.1 Background 

Explosions can be both accidental and intentional. The accidental explosions are 

typically occurring in the processing industry or in tunnels while intentional 

explosions can be connected to military or terrorist activity. 

An explosion can be characterized as an instantaneous expansion of matter resulting 

in high pressure and temperature that propagates away from the centre of detonation. 

The result is a load that might differ considerably from the type of static or quasi-

static loads normally used for design of structures. Due to the fact that the knowledge 

of the response of the structures in these situations is limited and the designing 

methodology often is simplified, there is a great need for further investigations within 

this subject.  

The response of reinforced concrete structures due to explosive load has been studied 

in a long time project performed by Chalmers in collaboration with the Swedish Civil 

Contingencies Agency (MSB) and Reinertsen. This Master’s Thesis carries on the 

studies as a continuation of five previous Master’s Theses carried out by 

Nyström (2006), Ek and Mattsson (2009), Augustusson and Härenstam (2010), 

Andersson and Karlsson (2012) and Carlsson and Kristensson (2012).  

 

1.2 Method 

In order to get a deeper knowledge about the response of concrete structures with 

regard to explosive loading a literature study is carried out. In order to simplify the 

analysis the analysed structures with infinite degrees of freedom are transformed into 

single degree of freedom (SDOF) systems. The SDOF systems are adapted to consider 

the local and global response of the frame structure. The SDOF system is created in 

Matlab R2013a and analysed using simplified hand calculation methods and a more 

detailed numerical method based on the central difference method. The FE program 

ADINA (2011) is used to create models in 2D and 3D which is considered to present 

the reality in sufficient degree. 

 

1.3 Limitations 

The material studied is reinforced concrete without taking the effects of temperature, 

creep or shrinkage into consideration. However, the methodology with some 

adjustments could be used for other materials.   

The material response models are approximated with elastic and elasto-plastic 

material response models. These models have proved to give satisfying results in 

previous studies. For the elasto-plastic model, plastic transformation factors are used, 

which is a simplification.  

The Master’s Thesis investigates the early response of impulse loaded structures. The 

impulse loads studied are induced by shock waves in air from an explosion and it is 

mainly the displacement that is studied. The influence of ground shock waves, bomb 

fragments and secondary effects from collapsing structures will be neglected.  
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The effect of strain hardening and increasing the resistance of the structure due to 

high strain rates is also neglected.  

 

1.4 Aim 

The aim of this Master’s Thesis is to further investigate the response of reinforced 

concrete structures subjected to explosions. This is based on the previous Master’s 

Theses and the intention is to provide a more comprehensive understanding of the 

subject. The main focus of this report is on structures composed of a few members, 

such as a frame structure which is investigated both in 2D and 3D analysis.  

Since the capacity of an impulse loaded structure depends on its ability to develop 

internal work, a parametric study is carried out in order to investigate the important 

parameters for impulse loaded structures. Depending on how the neutral axis is 

interpreted in Eurocode 2, the plastic deformation capacity of the structure will differ. 

This is investigated in order to find the most appropriate way of performing the 

calculations.  

The aim of the 2D analysis is to further investigate the SDOF models of a frame 

proposed in Johansson (2013) for the elastic case as well as the elasto-plastic. The 

focus for the elasto-plastic case is on the response models of the structures. The 

relationship between the resistance of the structure and the deformation is investigated 

with the aim to evaluate whether an SDOF system is appropriate for such cases.  An 

intention is also to find a combination of the two SDOF models in order to provide a 

more realistic response.  

In the 3D analysis a comparison is carried out between applying the impulse load 

directly on the front column of the frame, and applying the load on the wall and 

transferring it to the column by the reaction forces of the wall. The aim of the study is 

to investigate how realistic the direct application of the load, proposed in 

Johansson (2013), is and if there are alternative ways of calculating the load in the 

SDOF model. A parametric study is done in order to investigate the differences for 

when the stiffness and resistance of the wall is varied.  

 

1.5 Outline of report  

This report is divided into five chapters starting with Chapter 1, Introduction. 

Chapter 2, Background theory, covers the theoretical background of explosions and 

impulse load as well as the material and structural response models of structures 

subjected to both static and impulse load. The chapter also includes the theory of 

plasticity and plastic hinges. Finally, the concept of equivalent static load and 

transformation into a SDOF system is described.  

In Chapter 3, Parametric beam study, the important parameters for impulse loaded 

beams are investigated. A study is carried out in order to find an appropriate 

interpretation of the effective depth, d, for calculating the plastic deformation capacity 

in Eurocode 2. It is also examined whether the top reinforcement should be neglected 

or not in the hand calculations. 

Chapter 4, Structural response of a 2D frame, describes a simplified SDOF model of a 

frame consisting of a local and global model used for the front column and the whole 

frame, respectively. Both the elastic and elasto-plastic models are investigated with 
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focus on the structural response models. The SDOF calculations are compared with 

FE analyses.  

Chapter 5, Structural response of a 3D frame, focuses on the front wall and front 

column of the frame. A comparison is done between applying the impulse load 

directly on the front column of the frame, and applying the load on the wall and 

transferring it to the column by the reaction forces from the wall. Finally, a parametric 

study is carried out in order to investigate the effects of varying the stiffness and 

resistance of the wall.  

The results are presented and discussed in each chapter followed by a main 

concluding discussion at the end of the report, Chapter 6. References can be found in 

Chapter 7. In the appendices further background theory, hand calculations and 

additional graphs are presented. Appendix C discusses trilinear response models 

which are essential for this Master’s Thesis. 

 

 

 

 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 4 

2 Background theory 

2.1 References 

The main information presented in Chapter 2 is based on Johansson and 

Laine (2012a) and several figures are also taken from this reference. Some general 

information about the theory of plastic hinges and plastic rotation capacity are based 

on Engström (2011). Eurocode 2, CEN (2004), is used to present the calculation 

method for plastic rotation capacity.  

 

2.2 Explosions 

 Definition of explosion 2.2.1

An explosion is an instantaneous release of energy which creates a fast increase in 

pressure, see Figure 2.1. The explosion is an exothermal reaction which is over within 

a few microseconds. From the explosion a wave front, called a shock wave, is formed 

and spreads spherically. The temperature and pressure decreases with increasing 

distance from the centre of detonation. After a few milliseconds the whole process is 

over and then the pressure returns to atmospheric pressure. 

 
Explosion centre 

Pressure decreases further 

away from the centre 

 

Figure 2.1 The energy spreads outwards from the source of the explosion. 

The magnitude of the explosion is measured in the released energy, Joule. However, it 

also depends on the density of the explosive and the speed of ignition. Another, more 

applicable, way of measuring the magnitude of explosions is the effect that is obtained 

from the detonation of 1 kg TNT, corresponding to about 4.6 MJ. 

 

 Idealized shock wave 2.2.2

An idealized shock wave has both a positive and a negative phase, see Figure 2.2. The 

shock wave forces the air to move as it spreads and it will create a lack of air behind 

it, causing partial vacuum or negative pressure. At the time of arrival, ta, there is an 

instantaneous increase in pressure followed by the positive and negative phase. The 

negative phase is normally neglected and the positive phase is considered to be 

critical.  



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 5 

 
Pressure 

Time 

Negative pressure 

Positive pressure 

S
h

o
c
k

 f
ro

n
t 

       

P0 

ta 

 

Figure 2.2 Idealised shock wave from an explosion showing the positive and 

negative phase.  

A simplification of the shock wave is often made to make it easier to describe the load 

that the wave will give rise to. Usually, the negative phase is neglected and the 

pressure is assumed to be linear as illustrated in Figure 2.3. 

(a) 

Ppeak 

t1 
Time 

Pressure 

simplified curve 

Time 
(b) 

Pressure 

t1 

Ppeak 

 

 

Figure 2.3 (a) Idealised shock wave indicating the simplified curve. (b) Simplified 

shock wave. 

 

 Strain rate due to a shock wave 2.2.3

The load intensity applied on a structure subjected to an explosion results in a strain 

rate of the structure. A comparison of the strain rates obtained in a structure due to 

different loads is shown in Figure 2.4. The strain rate due to a static load is used as a 

reference and is therefore shown as 1.  
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4
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Earthquake Statical Creep Impact Blast load 

 

Figure 2.4 Comparison of strain rate between different types of loading where the 

static load is the reference load.  

The load due to an explosion is characterized by a very high load magnitude acting 

during a very short period of time. An explosion load is shown as an impact or blast 
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load in Figure 2.4 and the strain rate due to an explosion load can be up to 100 million 

times larger than a static load. 

The difference in strain rate demands different structural designs depending on which 

type of load the structure is subjected to. It is important to consider the fact that high 

strain rates influences the input material parameter of the structure. However this 

effect is not further discussed in this Master’s Thesis. 

 

 Blast load 2.2.4

There are several things affecting the load from an explosion, such as the energy 

content, the surroundings and the complexity of the target. The distance between the 

explosion and the target as well as the position of the target has a large influence on 

the size of the load.  

The shock wave can hit a building in several different ways and the distribution of 

pressure over time will differ depending on how it is reflected. For example, the angle 

between the structure and the explosion will matter, but most important is if the wave 

is reflected or not.  

Reflection occurs when a shock wave hits a building as illustrated in Figure 2.5. The 

size of the pressure depends on the magnitude of the explosion, the angle of which the 

explosion hits the structure as well as the distance between the structure and the 

explosion. When a shock wave hits the building perpendicular to the surface it is 

called a normal reflection and this type of reflection results in the highest pressure.  

 Plan 

Vy stötvågsfront 

Byggnad Byggnad 

r  

reflected 

impact 

r 

unreflected 

impact 

Explosion 

Building 
Building 

 

Figure 2.5 Reflected and unreflected shock wave. 

The difference in pressure between a reflected and an unreflected shock wave is at 

least two times but can be up to 20 times. The ratio between the reflected pressure and 

the shock wave, , can be described as 

 
  0

0

21

413

PP

PP

s

s















 (2.1) 

where the heat capacity ratio, γ, varies with the pressure. For a pressure lower than 

1000 kPa the heat capacity ratio can be put as 1.4.  
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The shock wave hits the different parts of the building at slightly different times, 

something that is often neglected since the difference in time is very small. The 

loading will also differ at different parts of the building, which can be dealt with in 

several ways. Either the worst load case is chosen for every part of the building, the 

load size closest to the explosion, or the load can be divided into different parts with 

different magnitudes.  

In a city environment, the complexity of the structures gives rise to several different 

phenomena such as diffraction and reflection. Diffraction is a decrease in pressure 

which occurs after a shock wave has hit an irregularity of a building and spread 

behind it. When a shock wave reaches the irregularity of the structure an air vortex is 

created and the pressure on the back side of the structure will decrease. 

 

Explosion 

Diffraction 

Diffraction 

Reflection 

Reflection 

   

Figure 2.6 Graphical presentation of shock wave phenomena due to an explosion.  

 

 Wave propagation 2.2.5

An impulse load which hits a body starts a mechanical wave that travels through the 

body and affects the different parts of the structure gradually with time. The effect of 

an explosion will therefore not always be active in the whole structure at the same 

time. This phenomenon occurs for all types of loads, but for impulse loads in 

particular it is noticeable due to the fact that it happens so fast.  

Figure 2.7 shows a three meter high and five meter deep concrete structure exposed to 

an explosion. The longitudinal wave propagation in concrete is about 3500 m/s why 

the rear wall isn´t affected by the load until about 1.4 milliseconds from the time the 

front wall is affected. 

In the figure it can be seen that after one millisecond the rear wall is not affected by 

the load. However, after two milliseconds the rear wall has begun to react to the 

loading. 
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t = 1 ms t = 2 ms 

  

t = 3 ms t = 5 ms 

Figure 2.7 Response of a shelter subjected to an impulse load acting on the left 

wall. The deformations are enhanced 20 times and the dark colour 

marks fully developed cracks. From Johansson and Laine (2012a). 

There are different types of mechanical waves which all need a medium to propagate 

through. The longitudinal waves, also called pressure waves, travels parallel to the 

direction of the energy. These are stronger and faster than the other mechanical waves 

and they are able to travel through all types of mediums. Mechanical waves that travel 

perpendicular to the direction of energy are called transverse or shear waves. These 

can only travel through solids. Surface waves travel in elliptical patterns such as 

ripples on a water surface.  

An illustration of a material at rest, a pressure wave and shear wave are shown in 

Figure 2.8. 
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Figure 2.8 Waves propagating through a body for: (a) material at rest; (b) pressure 

wave; (c) shear wave.  

Normally, a wave propagates as a combination of all waves but it´s the type and 

direction of load that decides which wave type will be dominant. If a beam, for 

example, is axially loaded the dominant wave type will be a pressure wave and if it is 

loaded perpendicularly to its longitudinal axis, the dominant wave type will be a shear 

wave.  

 

2.3 Material response due to static load 

 Concrete 2.3.1

The stress-strain relationship for concrete is presented in Figure 2.9. The material 

behaviour is close to linear at the very beginning of loading, after which it becomes 

non-linear. As can be seen in the figure, the concrete strength is much higher for 

compression compared to tension.  
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Figure 2.9 Stress-strain relationship for concrete. 

 

 Reinforcement 2.3.2

The structural response of reinforcement is presented in Figure 2.10a where fsy is the 

yield strength, fsu is the ultimate tensile strength, sy is the strain at which the 

reinforcement start to yield, sh is the strain at which steel hardening begins, s,fsu is 

the strain at the ultimate tensile stress fsu and su is the ultimate strain. The point when 

the stresses reach the yielding value, fsy, is followed by a plastic plateau, after which 

strain hardening begins.  

A simplification of this response, according to Eurocode 2, involves two alternatives 

shown in Figure 2.10b. The first alternative is characterised by a horizontal top branch 

with no strain limit, which is appropriate for hot rolled steel. The other alternative, 

with an inclined top branch and with a certain strain limit, is recommended for cold 

worked steel.  

 

 

fsy 

fsu 

s,fsu su 

 

sy sh 

(a) (b) 

fsy 

fsu 

 

 

s,fsu 

 

Figure 2.10 (a) Stress-strain relationship for a hot-rolled reinforcement bar and (b) 

idealized bilinear model according to Eurocode 2. 

The ductility of reinforcement has an important influence on the plastic rotation 

capacity and plastic deformation capacity, further described in Section 2.5. As these 

parameters are essential for impulse loaded structures, it is worth to mention the 

classification of reinforcement steel according to Eurocode 2, see Table 2.1.  
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Table 2.1 Classification of reinforcing steel according to Eurocode 2.The 

notations fsu, fsy and εs,fsu are illustrated in Figure 2.10. 

Class fyk 

[MPa] 

fsu / fsy 

[-] 

εs,fsu 

[%] 

A 400 - 600 ≥ 1,05 ≥ 2,5 

B 400 - 600 ≥ 1,08 ≥ 5,0 

C 400 - 600 
≥ 1,15 

< 1,35 
≥ 7,5 

 

2.4 Structural response due to static load 

 Orientation 2.4.1

Reinforced concrete structures subjected to loading involve both linear and nonlinear 

behavior and depend on the material response for both the reinforcement and the 

concrete. The typical response of a reinforced concrete section, subjected to 

increasing load, is presented in Figure 2.11. The section shows linear behavior as long 

as it is uncracked (state I). After the first crack has occurred, the stiffness decreases 

but the response is still linear (state II). When the concrete in the compression zone 

has started to show nonlinear behavior or the reinforcement has started to yield, the 

response of the section becomes plastic (state III). 

 

Moment, M 

Deformation, u 

Mcr 

Myd 

Mrd 

State I 

State II 

State III 

 

Figure 2.11 Typical response of a reinforced concrete section. 

This non-linear behavior makes the analyses of concrete structures complicated and 

induces a need of introducing simplifications. Thus, the typical reinforced concrete 

response is often approximated to a linear relationship. Models simulating the 

response of the reinforced concrete, which are used in this Master’s Thesis, are further 

described in Sections 2.4.2 and 2.4.4. Despite that these models present the real 

structural behavior in a simplified way, their correctness is assumed to be sufficient to 

understand the differences in response of investigated structure. 

 

 Linear elastic model 2.4.2

The simplest model is linear elastic which is characterized by unlimited elastic 

deformations and constant stiffness. The stiffness can be chosen as either the stiffness 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 12 

in state I or state II, i.e. for an uncracked or a cracked section, respectively. This is 

illustrated in Figure 2.12. The behaviour simulated by this model corresponds best to 

the response of a reinforced concrete structure subjected to limited loads, before 

state III is reached.   

Load, q 

Deformation, u 

qcr 

qyd 

qrd 

u 

q 

State I State II 

 

Figure 2.12 Typical response for a reinforced concrete structure marked with a 

dashed line and assumed linear elastic response marked with continuous 

lines for stiffness of state I and state II.  

If the stiffness of state II is used, the influence of the uncracked part is neglected. 

Nyström (2006) has investigated models where the uncracked stiffness is taken into 

consideration with the conclusion that the uncracked part does not have a significant 

influence on the response of the structure why it is neglected in this Master’s Thesis.   

However, the elastic model with stiffness in state I can be useful when dealing with 

pre tensioned structures for which the value of cracking resistance is significantly 

increased compared to reinforced concrete and thus state I is extended.  

The linear elastic model agrees with the response of steel before reaching its yield 

strength fsy, see Figure 2.10a. Linear elastic material is described by Hooke’s law and 

presented in Figure 2.13a.  
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ε
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u

ε (b) 
 

Figure 2.13 Linear elastic response for: (a) material; (b) structure. 

By following Hooke’s law, a relation for the linear elastic response of the concrete 

structure is established, Figure 2.13b. The elastic displacement u increases 

proportionally with increasing the internal resisting force R while the structural 

stiffness k remains constant. This can be described as 

uk=R    (2.2) 
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The structure or material returns to its initial shape after removal of the load. This 

means that there will be no remaining deformation after the load is removed.  

 

 Ideal plastic model 2.4.3

The behaviour described by the ideal plastic model corresponds to the response in 

ultimate limit state, state III, when the yielding strength of the material or the ultimate 

load capacity of the structure is reached. A comparison of this model to the typical 

response of a reinforced concrete structure is presented in Figure 2.14 where upl is the 

plastic deformation. 

 
Load, q 

Deformation, u 

qcr 

qyd 

qrd 

u 

q 

upl 

 

Figure 2.14 Typical response for a reinforced concrete structure marked with a 

dashed line and assumed plastic response marked with a continuous 

line. 

The response of the ideally plastic material is presented in Figure 2.15a. The 

deformations are equal to zero until the stresses reach the material yield strength. 

After that, the plastic deformation develops without increasing the stresses. The model 

for the structure is established in Figure 2.15b. 
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Figure 2.15 Ideal plastic response for: (a) material; (b) structure. 

The structural model can be described as 

 

 
(2.3) 

where F is the external load and Rm is the maximum internal force. This model 

assumes that the region of the structure where the plastic capacity has been reached 
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has an ideally plastic behavior. This results in the formation of a plastic hinge. The 

plastic deformation remains after removal of the load.  

In an ideal plastic model the plastic deformation capacity is unlimited. However it 

must be remembered that this is not the case in reality and a concrete structure has 

limited plastic deformability. In order to assure that a plastic hinge can develop it is 

necessary to provide the structure with a sufficient plastic rotation capacity. The 

subject of plastic rotation capacity is discussed in Section 2.5. 

 

 Elasto-plastic model 2.4.4

The elasto-plastic behavior combines linear elastic and ideal plastic response. It is 

characterized by elastic behavior with a constant stiffness that corresponds to the 

stiffness in state II and elastic deformations up to the material yielding strength or the 

ultimate load capacity of the structure. After exceeding this value the plastic state with 

plastic deformation is reached. A comparison of this model to the typical behavior of 

a reinforced concrete structure is presented in Figure 2.16, where uep,el is the elastic 

deformation and uep,pl is the plastic deformation. 

 

Load, q 

Deformation, u 

qcr 

qyd 
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q 

uep,el uep.pl 

 

Figure 2.16 Typical response for a simply supported beam of reinforced concrete 

marked with a dashed line and assumed elasto-plastic response marked 

with a continuous line. 

If the structure is unloaded in the plastic stage the response will be parallel to the 

inclination in the elastic stage governed by the elastic stiffness in state II, Figure 2.17. 

If the structure is loaded again, the deformations will follow the elastic response up to 

the yield strength and after reaching this value the deformations will continue from 

the value reached in the previous loading cycle.  
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Figure 2.17 Elasto-plastic response for: (a) material; (b) structure.  

Depending on if the external load F has reached the maximum internal force Rm the 

elasto-plastic relationship can be expressed as 

 

 
(2.4) 

where uep,el is the elastic deformation in the elasto-plastic response model. 

This model is the more realistic than the elastic and ideally plastic models presented 

in Section 2.4.2 and 2.4.3, respectively.  

 

2.5 Plastic hinges and plastic rotation capacity 

 Theory of plastic hinges 2.5.1

At the stage when a section has reached its moment capacity, Mrd, and shows an 

ideally plastic behaviour, the deformation capacity is unlimited. If a section with such 

properties develops in a beam, it will deform much more than the neighbouring 

regions, which still shows elastic response. This plastic section will connect the 

regions with elastic response and the shape of the beam will differ. As this region, 

with such a large curvature, is comparatively small, it can be assumed that the 

developing deformation will concentrate only in this plastic section, i.e. plastic hinge. 

The regions with plastic behaviour as well the corresponding curvature and the model 

assumed in the calculation methodology for a simply supported beam and a beam with 

fixed edges is presented in Figure 2.18. 
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Figure 2.18. Plastic hinges and corresponding curvature for a: (a) simply supported 

beam; (b) fixed beam, Nyström (2006). 

When the load is further increased, more than one plastic hinge can develop, 

depending on the support conditions. In case of static loading, failure of the structure 

occurs when the collapse mechanism is created. However, this is not the case for the 

structures subjected to dynamic loading. For such type of loading collapse of the 

structure occurs when the plastic rotation capacity is reached. 

For a statically determinate structure such as a simply supported beam, only one 

plastic hinge is formed, which is the condition for the collapse mechanism to be 

created. The continuous beams and the beams fully restrained at the supports are more 

redundant. The structures which are n-order indeterminate can develop n + 1 plastic 

hinges.  

Thus, for example, a beam which is fully fixed at one edge and simply supported at 

the other develops plastic hinges in the span as well as at the fixed support. When it is 

subjected to a uniformly distributed load the yielding starts at the fixed support. If the 

load is further increased, a plastic hinge develops at this section. Since the moment 

cannot increase further in this section, it can be assumed that the restraint at this 

support corresponds to a simply supported boundary condition. Thus, the studied 

beam can be considered as simply supported, loaded with a constant moment, i.e. the 

plastic moment, at the fixed support. The formation of a plastic hinge at the fixed 
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support, however, has not triggered the collapse mechanism yet. There is still capacity 

left in the span section and the load can be increased until yielding starts in the span 

and the plastic hinge is formed there as well, at which time a collapse mechanism is 

created. The calculation of the moment at the fixed support and in the span in ultimate 

limit state, when the collapse mechanism is formed, is presented in Section 2.6. 

The formation of plastic hinges for a continuous beam, together with its extension 

length lpl and its development of plastic rotation θpl, is schematically presented in 

Figure 2.19. A continuous beam with an increasing load q is illustrated in 

Figure 2.19a. In Figure 2.19b, the deformed shape of the studied beam, before 

yielding is reached in any section, is illustrated. As the load increases the first plastic 

hinge develops at the intermediate support, Figure 2.19c. The rotation θpl continues to 

develop until two additional plastic hinges are formed in the span sections and the 

collapse mechanism is created, Figure 2.19d. 

 

q 

(a) 

(b) 

(c) 

(d) 

θpl 

θpl 

θpl 

lpl 

  

Figure 2.19 Formation of plastic hinges and development of plastic rotation for a 

continuous beam loaded with an increasing load q. The extension length 

of the plastic hinge, lpl, is schematically presented. 

According to Engström (2011) two types of plastic hinges can be distinguished, single 

and double. A single plastic hinge is formed at the fixed support, Figure 2.20a. A 

double plastic hinge develops in the span (Figure 2.20b) or at the support section in a 

continuous beam, Figure 2.20c. 
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Figure 2.20 (a) Single plastic hinge at fixed support; (b) double plastic hinge in the 

span; (c) double plastic hinge in the section above the support of the 

continuous beam, Engström (2011). 

 

 Definition of plastic rotation capacity 2.5.2

When analysing an impulse loaded structure with a plastic or an elasto-plastic model, 

not only the ultimate resistance should be checked but also the ultimate deformation. 

The deformation is estimated by using the concept of plastic rotation, θpl, 

schematically shown in Figure 2.21. Plastic rotation describes the increasing curvature 

of the section, due to the development of plastic deformations, which begins when the 

moment capacity of the section has been reached and continues until the section 

collapses.  

 

u 

pl 

L/2 L/2 

h 

 

Figure 2.21 Plastic rotation and deflection for the plastic model. 

In the moment curvature diagram, presented in Figure 2.22, the plastic rotation begins 

when the curvature reaches the value of (1/r)y and develops until its ultimate 

magnitude (1/r)u is reached. 
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Figure 2.22 A moment curvature diagram. The plastic rotation begins at the first 

yielding (at curvature (1/r)y) and continues until the collapse mechanism 

develops (at curvature (1/r)u ). 

In order to calculate the plastic rotation, θpl, an integration of the curvature over the 

extension length lpl is done, according to equation (2.5). The extension length of a 

plastic hinge is schematically presented in Figure 2.19c. 
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The definition of the curvature, which is the inclination in the strain distribution 

diagram, Figure 2.23, can be calculated as 

u

s

u

cc

xdxr

1





 (2.6) 

where εcc, is the concrete strain at the compressed edge of the section, εs  is the steel 

strain in state III, xu is the height of the compression zone in ultimate limit state and d 

is the effective depth.  
 

εcc 

xu 

εs 

d 

 

Figure 2.23 The strain distribution diagram, where the curvature of the section is its 

inclination. 

When dealing with plastic rotation capacity it is good to recall how the magnitude of 

the compressive concrete zone x to the effective depth d influences the strain 

distribution in the loaded section. The steel strain for the cross section can be 

calculated as 
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cus
x

xd



  (2.7) 

If the ratio of x1 to d is too large, the steel strain will not reach its maximum value 

when the section reaches its capacity, see Figure 2.24a. In the compressed zone of the 

concrete the failure will be brittle and caused by crushing of the concrete. In this case, 

the area of the steel bars should be decreased in order to utilize the yielding strength 

of the steel. Another solution could be to increase the height of the section or to 

increase the compressive strength of the concrete. This would provide a lower ratio of 

x2 to d and a more effective use of the steel strength which secures plastic response. 

This is presented in Figure 2.24b. 
 

εcu 
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Figure 2.24 Strain and stress values for a reinforced concrete section reaching its 

capacity. (a) For a high value of the compressive zone x1 in relation to 

the effective depth d, the steel stresses are lower than the yielding 

strength. (b) For lower ratios of x2 to d, the stresses reach the yielding 

strength. 

 

 Calculation method for plastic rotation capacity 2.5.3

There are several calculation methods for plastic rotation capacity, established by 

different authorities. The parametric beam study in Chapter 3 is conducted according 

to the recommendations found in Eurocode 2, CEN (2004), which are briefly 

described in the following paragraphs. A more detailed description can be found in 

Section A.5.  

The base for methodology in Eurocode 2 is the graph illustrated in Figure 2.25, where 

the plastic rotation capacity is a function of the compressed concrete zone x to the 

effective depth d, with consideration to the reinforcement ductility and the concrete 

strength class.  
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Figure 2.25 Graph for plastic rotation capacity from Eurocode 2, CEN (2004). 

The plastic rotation capacity, θpl, obtained from the graph should be multiplied with a 

factor k calculated as 

where 

d

L0  (2.9) 

and L0 is the distance between the plastic hinge and the section where the moment is 

zero. Thus, the revised plastic rotation capacity is 

plrd k     (2.10) 

According to the graph for plastic rotation capacity, failure of the section is caused by 

either crushing of the concrete or by rupture of the reinforcement. In the interval with 

small values of x/d, where the rotation capacity is limited by the ultimate steel strain, 

the rotation capacity increases with increasing ratio of x/d and failure is caused by 

rupture of the reinforcement. For larger values of x/d, where the rotation capacity is 

limited by the ultimate concrete stain, failure occurs due to crushing of the concrete. 

According to Engström (2011) this simple method gives conservative results. 

Moreover, it was developed for statically loaded structures but is also applicable for 

impulse loading.  

 

 

3


 k  (2.8) 
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2.6 Structural response of statically indeterminate 

structures 

In this section, a short description of the non-linear response of statically 

indeterminate structures is given. The description is based on the beam which is 

simply supported at one edge and fixed at the other, illustrated in Figure 2.26. It is 

assumed that the section at the support is provided with more reinforcement than the 

section in the span. Thus, the stiffness EIs is larger than EIf. 

 

q 

Span section, 

EIf 

 

Support section, 

EIs 

 

 

Figure 2.26 The studied beam is simply supported at one edge and fixed at the other, 

for which the response and changes in moment distribution due to an 

increase of load is studied. 

During the uncracked stage, the beam shows linear structural response. The moment 

distribution increases in proportion to the increase of the load and corresponds to 

line 1 in Figure 2.27a. When the load is further increased, cracking begins at the fixed 

support since the moment is higher there. The section at this support cracks, and the 

stiffness EIs decreases. As a consequence, the moment is attracted to the stiffer 

regions in the span section since they are still uncracked. The moment diagram, for 

that stage, is defined as line 2 in Figure 2.27a. Further increase of the load results in 

cracking of the span sections. 

When both the sections in the span and at the fixed support are cracked, the moment is 

attracted to the stiffer regions at the fixed support, as it is provided with higher 

stiffness. The moment distribution at that stage is defined as line 3 in Figure 2.27. 

Now yielding starts at the fixed support, before the design load is reached and the first 

plastic hinge is formed. This corresponds to a moment distribution shown as line 4 in 

Figure 2.27b.  

However, there is still capacity left as the section in the span has not reached its 

ultimate moment resistance yet. The load can be further increased up to the point 

when the ultimate capacity of the critical section in the span is reached after which a 

plastic hinge is created in the span and a collapse mechanism forms. The moment 

distribution is defined as line 5 in Figure 2.27b. From this point the load cannot be 

further increased. Local failure occurs, in the plastic region, as a result of either 

concrete crushing or reinforcement rupture.  
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Figure 2.27 The changes in the moment distribution for a span of a continuous beam, 

due to an increase of load: (a) stages 1-3; (b) stages 3-5. 

 

2.7 Structural response due to impulse load 

 Difference between impulse and static load 2.7.1

An explosion leads to an impulse load which can contain a maximum pressure that is 

many times larger than an equivalent static load. In addition to the large difference in 

load magnitude, the duration of the impulse load is significantly shorter than a 

constant static load, see Figure 2.28. These are the reasons for the considerable 

difference in the structural responses that may be obtained due to impulse load and 

static load, respectively. Thus, the calculation methodology for the impulse loaded 

structures, used in this Master’s Thesis, involves dynamic analysis based on the 

equivalent single degree of freedom (SDOF) system, described in Section 2.9. 

 

Time 

Pressure 

Static load 

Blast load 

  

Figure 2.28 Comparison of the duration and magnitude of a blast load and 

equivalent static load acting on a civil defence shelter (Johansson and 

Laine (2012a)). 

Impulse loaded structures are normally provided with an equal reinforcement amount 

on both edges of the cross section. This is essential due to the fact that when a 
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structure subjected to an impulse load sways back and forward, the compressed edge 

becomes tensioned and tensioned edge compressed.  

In order to provide knowledge about the response of structures subjected to impulse 

load, it is essential to introduce some basics dynamic concepts. The most important 

concepts are presented in the following sections. 

 

 Force and Pressure 2.7.2

The force F is defined, according to Newton’s second law, as the correlation between 

the mass m and the acceleration a as 

maF   (2.11) 

The definition of pressure, P, which is used to describe the magnitude of the shock 

waves, is 

A

F
P   (2.12) 

where P is the pressure and A is the area subjected to the force F. 

 

 Momentum, impulse and impulse intensity 2.7.3

The momentum, p, for a body with the mass m and the velocity v is expressed as 

mvp   (2.13) 

The change in momentum for a body with an initial velocity v0 caused by the force F 

within the time interval from t0 to t1 can be expressed as  


1

0

)(01

t

t

dttFvmvm  (2.14) 

The impulse I transmitted to the body is generated from the force F 


1

0

t

t

dt)t(FI  (2.15) 

The impulse intensity is the integral of the pressure-time-curve as illustrated in 

Figure 2.29 and it is expressed as 


1

0

t

t

dt)t(Pi  (2.16) 
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t0 t1 

  

Figure 2.29 The impulse intensity. 

The correlation of the pressure, which describes the magnitude of the shock wave, to 

the total impulse I acting on the area A can also be recognized as 

 
1

0

t

t

dttPAAiI  (2.17) 

When discussing the concepts of pressure and impulse, two types of dynamic loading 

are worth mentioning. Figure 2.30a presents the ideal impulse load described by the 

concept of characteristic impulse Ik which is an infinite high pressure, acting during an 

infinite small time interval. In this case, the force instantaneously increases and 

decreases. Figure 2.30b illustrates a pressure load defined by a characteristic pressure 

load Fk which is a shock wave acting during an infinite long time with constant 

magnitude.   

 Force, F 

Ik 

ta 

(a) 

Time, t 

(b) 

Force, F 

Time, t 
ta 

Fk 

 

Figure 2.30 Two cases of dynamic loading: (a) ideal impulse load; 

(b) pressure load.  

 

 External work and energy 2.7.4

Work is a parameter that describes the transfer of energy based on the law of energy 

conservation. It can be represented by potential or kinetic energy and it can be 

classified as external and internal work.  

The external work, We, is the work done by the external force, i.e. impulse load due to 

an explosion acting on the structure. The internal work, Wi, is a result of the action of 

the internal resistance of the structure. The measure of the structural response due to 

external work is a resulting deformation and is further discussed in Section 2.7.5. 
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According to the law of energy conservation, no energy disappears. If a certain force 

acts on the structure, the work done by this force is converted into kinetic or potential 

energy within the structure. Thus, the work done by the force acting on the body is 

equal to the increase in kinetic energy of this body, causing its movement or 

deformation. This is valid only when there is no friction or other forces causing 

energy losses. According to the law of energy conservation, the work equilibrium, 

where the kinetic energy should be balanced by the internal energy Wi, is 

kie WWW   (2.18) 

The definition of the external work, for impulse loaded structures, involves the 

concepts of impulse and kinetic energy transferred into the structure. The action of the 

impulse I on the body with mass m and velocity v can be described as 

mvI   (2.19) 

The kinetic energy Ek that is transferred by the impulse to the structure is defined as 

2

2vm
Ek


  (2.20) 

This equation is most appropriate to use when the impulse I corresponds to the 

characteristic impulse Ik. If this is the case, the external energy can be assumed to be 

equal to the kinetic energy. The internal work done by the structure when the kinetic 

energy is transferred into potential energy within the structure can be disregarded. If 

the impulse is prolonged in time, the structure has time to develop the resistance and 

absorb the energy. This means that the external work done by the impulse will be 

smaller than in case of a characteristic impulse. This is illustrated in Figure 2.31. 

We,1 - characteristic impulse 

We,2 - for an arbitrary shockwave 

 

Force, F 

Time, t 

dt 

I1  = I2 but We,1 > We,2 

t1 
 

Figure 2.31 External work for a characteristic impulse and an impulse prolonged in 

time. Both impulses have the same magnitude.  

Thus, by inserting equation (2.19) into (2.20), the external work can be presented as 

the result of the characteristic impulse acting on the mass m, calculated as 

m

I
EW k

ke
2

2

  (2.21) 
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The concept of internal energy for different response models is further described in 

Section 2.7.5, where also the calculation method is explained for deformations of 

impulse loaded structure. 

 

 Internal work and corresponding deformation 2.7.5

2.7.5.1 Introduction 

One of the most important concerns when dealing with structures subjected to impulse 

load is the ability of the structure to deform due to assimilation of the kinetic energy 

resulting from the dynamic load. The energy equilibrium, equation (2.18), is the base 

for the calculation methodology for impulse loaded structures. The kinetic energy, 

which represents the external energy, We, should be balanced by the internal energy, 

Wi. By involving this condition, the resulting deformation can be assessed, Johansson 

and Laine (2012a). This deformation is of the minimum magnitude that assures that 

the structure is able to take care of the evolved energy, when the impulse affects the 

structure, without local failure or collapse. As the response of the structure subjected 

to the increasing load is nonlinear, approximate models simulating the structural 

behaviour are introduced. Sections 2.7.5.2 to 2.7.5.4 presents the resulting 

deformation for structures subjected to characteristic impulse load for elastic, plastic 

and elasto-plastic response models, respectively. Section 2.7.6 presents how the 

calculation should be modified for impulse loads other than characteristic. 

 

2.7.5.2 Elastic response 

In case of the elastic response, the magnitude of the internal work, Wi, presented in 

Figure 2.32 where uel corresponds to the elastic deformation in the elastic response 

model, can analytically be described as 

 
22

2

elelel
i

kuuuR
W 


  (2.22) 

 

 

u 

R 

Wi 

uel 

k 

 

Figure 2.32 Resistance-displacement relation for a structure with elastic response. 

The work equilibrium and the resulting elastic deformation, which is schematically 

presented in Figure 2.33, is calculated as  
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m

I
u

ku

m

I
WW k

el
elk

ie 
22

22

 (2.23) 

where ω is angular frequency which can be described as 

m

k
  (2.24) 

 

 

u 

F, R 

uel 

k 

Wi 

We 

R 

 

Figure 2.33 Work equilibrium for the elastic response. 

 

2.7.5.3 Plastic response 

The internal work, Wi, shown in Figure 2.34, where upl corresponds to the plastic 

deformation in the plastic response model, is calculated as 

  plmplplmi uRuuRW   (2.25) 

 

u 

R 

Rm 

Wi 

upl 
 

Figure 2.34 Resistance-displacement relation for a structure with plastic response.  

The work equilibrium and the resulting plastic displacement presented in Figure 2.35 

can be calculated as  

m

k
plplm

k
ie

mR

I
uuR

m

I
WW

22

22

  (2.26) 
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Figure 2.35 Work equilibrium for the plastic response. 

 

2.7.5.4 Elasto-plastic response  

The internal work shown in Figure 2.36, where uep,el corresponds to the elastic and 

uep,pl to the plastic deformation in the elasto-plastic response model, is calculated as 

 
pl,epel,ep

m
i uu

R
W 2

2
  (2.27) 

 

u 

R 

Rm 

Wi 

uep,pl uep,el 

uep = uep,el + uep,pl 

 

Figure 2.36 Resistance-displacement relation for a structure with elasto-plastic 

response. 

The work equilibrium and resulting plastic displacement presented in Figure 2.37 can 

be calculated as 

 
222

2
22

22
el,ep

pl

el,ep

m

k
pl,eppl,epel,ep

mk
ie

u
u

u

mR

I
uuu

R

m

I
WW   (2.28) 

Together with the elastic part the total deformation the elasto-plastic deformation can 

be calculated as 

m

kmel,ep

plpl,epel.epep
mR

I

k

Ru
uuuu

222

2

  (2.29) 
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Wi 

We 

Rm 

uep,el 

uep = uep,el + uep,pl 

 

Figure 2.37 Work equilibrium for the elasto-plastic response. 

 

 Modification factors for impulse loads other than characteristic 2.7.6

2.7.6.1 Orientation 

The definitions of deformation due to impulse load presented in Section 2.7.5 are 

established with regard to a characteristic impulse load. For impulse loads that are not 

considered as characteristic, the equations deliver results on the safe side since the 

resulting deformation is overestimated. In order to modify the result, the impulse load 

factor γ1 and pressure load factor γF, should be used together with the damage curves, 

according to Johansson and Laine (2012a). 

A random impulse load with maximum load F1 and impulse I1 is presented in 

Figure 2.38. 

 

t 

F 

F1 

t1 

I1 

 

Figure 2.38 A random impulse load. 

 

2.7.6.2 Elastic model 

For the elastic response, γI describes the relation of the impulse I1 to the corresponding 

characteristic impulse load Ik in equation (2.30). The notation γF describes the relation 

of the maximum load F1 to the corresponding characteristic pressure load Fk. in 

equation (2.31). 

k

I
I

I1

 

(2.30) 
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k

F
F

F1

 

(2.31) 

By involving the ratio of periodicity T to the duration of the load t1 and a type of load 

according to Figure 2.39, the correct value of modification factor is established from 

Table 2.2. The frequency f and periodicity T are calculated as 





2
f  (2.32) 

f
T

1
  (2.33) 

 

t 

F 

t1 

F1 

I1 

n = 0 

(a) (b) 
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F 

t1 

F1 

I1 

n = 1 

(c) 

t 

F 

t1 

F1 

I1 

n = 2 

 

Figure 2.39 Type of impulse loads used in the estimation of the correct value of 

deformation where the factor n describes how the load decreases, 

Johansson and Laine (2012a). 
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Table 2.2 The correlation of error δel , the ratio T/t1, impulse load factor γI and 

pressure load factor γF,  for the load types according to Figure 2.39. 

From Johansson and Laine (2012a). 

δel I 
I

F

t

T




 

1  I

F

t

T






21  I

F

t

T






31  

[%] [-] n = 0 n = 1 n = 2 

1 1,01 12,89 10,60 8,84 

2 1,02 9,22 7,45 6,13 

3 1,03 7,51 6,10 5,00 

4 1,04 6,52 5,33 4,35 

5 1,05 5,86 4,75 3,90 

10 1,10 4,20 3,41 2,78 

15 1,15 3,48 2,82 2,29 

20 1,20 3,06 2,47 1,98 

25 1,25 2,78 2,23 1,77 

50 1,50 2,10 1,56 1,18 

75 1,75 1,80 1,23 0,91 

100 2,00 1,57 1,02 0,74 

 

If γI = 1, the studied impulse corresponds to a characteristic impulse. The notation δel 

indicates how much the deformation calculated from equation (2.23) is overestimated. 

In order to get the correct value of deformation, the magnitude of the studied impulse 

is increased with δel when it is inserted into equation (2.23). For example, for a ratio 

of T/t1 = 4.75 and a type of load corresponding to n = 1, δel = 5 % and γ1 = 1.05. Thus, 

the value of the impulse Ik inserted into equation (2.23) is II /1.05. 

 

2.7.6.3 Plastic model 

For the plastic response, similarly as for the elastic, γI describes the relation of the 

random impulse I1 to the corresponding characteristic impulse load Ik, see 

equation (2.34). The notation γF describes the relation of the random load F1 to the 

internal resistance R, equation (2.35). 

k

I
I

I1

 

(2.34) 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 33 

R

F
F

1
 

(2.35) 

By using the correlation between F1 and R together with the type of load, according to 

Figure 2.39, the error in the estimation of the deformation when using equation (2.26) 

for the random impulse load, δpl, can be calculated.  

 

Table 2.3 The correlation of the estimation error δpl , the impulse load factor γI 

and the pressure load factor γF,  for the load types according to 

Figure 2.39. From Johansson and Laine (2012a). 

δpl I 
R

F
F

1
 R

F
F

1
 R

F
F

1
 

[%] [-] n = 0 n = 1 n = 2 

1 1,005 100 - - 

2 1,010 52 70 77 

3 1,015 35 46 52 

4 1,020 27 35 39 

5 1,025 21 29 32 

10 1,049 11 15 17 

15 1,072 7,7 10 12 

20 1,095 6,0 8,0 9,0 

25 1,118 5,0 6,7 7,5 

50 1,225 3,0 4,0 4,5 

75 1,323 2,3 3,1 3,5 

100 1,414 2,0 2,7 3,0 

 

The correct value of the deformation is obtained by modifying the value of Ik inserted 

in equation (2.26). For example, for an impulse load corresponding to n = 1 and 

γF = 10, an error estimation of δpl = 15 % and an impulse load factor of γI = 1.072 is 

obtained according to Table 2.3. This means that the deformation for this impulse load 

is overestimated with 15 % when equation (2.26)  is used, why the impulse Ik inserted 

in this equation should be decreased. Thus when Ik is inserted in equation (2.26) it is 

modified to Ik  = I1 /1.072 for the correct plastic deformation to be obtained. 
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 Essential parameters for impulse loaded structures 2.7.7

Besides the mass of the structure, which decreases the effect of the impulse load, the 

most important parameter of the structure is its ability to absorb the external energy. 

When a shock wave hits a structure the external energy is transferred into internal 

energy of the beam in form of potential and kinetic energy due to deformations. The 

structure will resist the impact when its maximum internal work Wi reaches the value 

of the external work We. In such case, the maximum allowable deformation is 

obtained. Figure 2.40 presents a combination of these two parameters which results in 

a certain deformation utot. 

 

u 

F, R 

utot 

F(u) 

R(u) 

We 

Wi 

 

Figure 2.40 Combination of the external work We resulting from the external 

force F(u) and the internal work Wi done by the internal force R(u).  

In general, the response of a structure with high stiffness is characterised by small 

deformations and high resisting force while for a structure with low stiffness, the case 

is the opposite. The capacity of the structure to absorb energy is a combination of its 

ability to deform and its maximum resistance. Thus, for explosion load a high 

resistance combined with a small deformation is not always beneficial, Johansson and 

Laine (2012a). For an impact load, the internal work Wi,1 needed to balance the 

external load, can be less than the internal work Wi,2 for a structure with low stiffness. 

This is illustrated in Figure 2.41. 

 R 

u 
u1 u2 

R1 

Wi,1 

R2 

Wi,2 

Wi,2 > Wi,1 

 

Figure 2.41 Comparison of a structure with high stiffness, high resistance and low 

deformation ability with a structure provided with low stiffness, low 

resistance and large plastic deformation ability.  

A ductile material behaviour, with high plastic rotation capacities, is desired for 

structures subjected to impulse loading. For the statically loaded structures, on the 

other hand, it is preferred to obtain a high strength and small deformation through 

high load capacity and high stiffness. 
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2.8 Equivalent static load 

 Introduction 2.8.1

To make further simplifications when dealing with the assessments of the impulse 

loaded structures, the dynamic load can be transferred into an equivalent static load. 

Johansson and Laine (2012a) have presented this procedure based on the assumption 

that the acting impulse load Ik involves the same amount of transferred energy as the 

work done by the static load Q. The equivalent static load for the elastic, plastic and 

elasto-plastic model is presented in the following sections.  

 

 Elastic model 2.8.2

In case of an elastic response model, the work done by the external force Q is 

2

el

e

Qu
W   (2.36) 

and by comparing this to the work done by the characteristic impulse load Ik, the 

equivalent static load resulting in the elastic deformation is established as 




k
kkkel IQ
m

I

m

QI

m

IQu


2222

22

 (2.37) 

 

 Plastic model 2.8.3

For the plastic response the work done by the external force Q is 

ple QuW   (2.38) 

Following the same procedure as in case of the elastic response the equivalent static 

load Q is 

m
k

m

kk
pl RQ

m

I

mR

I
Q

m

I
Qu 

222

222

 (2.39) 

 

 Elasto-plastic model 2.8.4

For the elasto-plastic response the equivalent static load Q corresponds, similarly as in 

the case of plastic response, to the ultimate resistance Rm, which is established by the 

stiffness k for the elastic phase and the deformation uep,el for the elastic phase, see 

Figure 2.36. 

mRQ   (2.40) 

where Rm=kuep,el 
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2.9 Transformation into SDOF system 

 Introduction to SDOF system concept 2.9.1

Deformable structures have an infinite number of degrees of freedom. However, the 

system can be discretized into an arrangement with a finite number of degrees of 

freedom. By simplifying the system it can be transformed into a system with a single 

degree of freedom, i.e. SDOF.  

   

 q(x,t) 

 m, L, E, I, c 

Re ce 

me 

Fe(t) 

 

Figure 2.42 Transformation of the beam into a SDOF system. 

In the SDOF system, equivalent quantities for mass as well as internal and external 

load are used. The quantities are written without an index e for the untransformed 

body and with an index e for the equivalent body of the SDOF system. The 

transformation is done using transformation factors, κ, which depend on both the 

applied load and the deflected shape of the structure. Transformation factors are 

further described in Section 2.9.3.  

The SDOF system is one-dimensional and can therefore only move in one direction 

while the real structure is three dimensional and can move in three directions. 

To be able to transform a structural system into a SDOF system a deflection shape has 

to be assumed. A structure has an infinite number of bending modes, but when 

creating a SDOF system the deflection shape is based on a static case similar to the 

first bending mode.  

 

 

 

 First bending mode 

Second bending mode 

Third bending mode 

 

Figure 2.43 The three first bending modes. 

A condition for using a SDOF system is that a uniform change of deformation is 

assumed, meaning that a change in displacement for every part of the beam is 

proportional to all other parts.  
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Based on this a SDOF system can describe the behaviour of the structure in any point. 

For a simply supported beam or a cantilever beam the chosen point is often the one 

with maximum deflection. For a beam fixed at one edge and simply supported at the 

other the chosen point is often in the middle. The chosen point represented by the 

SDOF system is called the system point.  
 

 

 

 

 

 

System point 

 

Figure 2.44 System point in the middle of a simply supported beam. 

 

 Equation of motion 2.9.2

Bearing in mind Newton’s second law, equation (2.11), it can be noticed that the body 

with mass m and acceleration a, as in Figure 2.45a, is subjected to a system of forces 

which results in the following equilibrium 

ma)RR()t(F dynsta   (2.41) 

where F(t) is the external force and Rdyn and Rsta describes the dynamic respective 

static internal resistance of the body. 

 

m 

a 

F(t) 
Rdyn 

Rsta 

F(t) 

k 

c 

m 

u 

(a) (b) 
 

Figure 2.45 (a) Forces acting on the rigid body; (b) Forced damped SDOF system. 

As presented in Figure 2.45b, this can also be described in form of a SDOF system 

with a damper and a spring. Thus the internal static resistance, Rsta, of the body can be 

expressed as the correlation between the spring stiffness k and the displacement u 

kuRsta   (2.42) 

and the internal dynamic resistance can be expressed as the damping c times the 

velocity of the body u  

ucRdyn
  (2.43) 

By combining the forces with force equilibrium the equation of motion is obtained as 

 tFkuucum    (2.44) 
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where ü is acceleration. 

 

 Differential equation for equation of motion 2.9.3

It has been shown in Section 2.9.2 that the equation of motion for a structure can be 

written as  

)t(Fkuucum    (2.45) 

where m is the untransformed body mass, ü is the acceleration, c is the damping, u  is 

the velocity, k is the stiffness, u the displacement and F(t) the external force acting on 

the untransformed body. However, for structures subjected to impulse loading the 

damping is usually not important and is therefore often neglected in these 

calculations. 

For the case of one degree of freedom, the damping is neglected and therefore the 

equation of motion can be written as 

)(tFRum   (2.46) 

where R is the internal force 

kuR   (2.47) 

Transformation factors are used to transform the quantities of the original structure to 

a SDOF system. These are defined as 

m

me
m   (2.48) 

R

Re
K   (2.49) 

)(

)(

tF

tFe
F   (2.50) 

Based on conservation of kinetic energy and by assuming that the mass is constant per 

meter, the transformation factor κm can be written as 








Lx

x s

m dx
u

xu

L
0

2

2)(1
  (2.51) 

The conservation of applied load for a uniformly distributed load q(x) = q gives a 

transformation factor κF described as 








Lx

x s

F dx
u

xu

L
0

)(1
  (2.52) 
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For further information about the transformation factors the reader is referred to 

Johansson and Laine (2012a). Inserting the transformation factors into the equation of 

motion gives  

)(tFRum FKm    (2.53) 

Dividing by κF the equation can be written as 

)(tFRum
F

K

F

m 







  (2.54) 

According to Biggs (1964)  

FK    (2.55) 

A new transformation factor κmF  is introduced 

F

m
mF




   (2.56) 

Now, the equation of motion for a SDOF system can be written as 

)(tFRummF   (2.57) 

This shows that it is only the body mass that is affected by a factor κmF in order to 

transform the structure into a SDOF system.  

Transformation factors for different structural elements with different boundary 

conditions and loading cases are presented in Table 2.4, Table 2.5 and Table 2.6. 
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Table 2.4 Transformation factors for a beam subjected to a point load. From 

Johansson and Laine (2012a). 

 

Point load on beam element 

 

 
 

 
 

 
 

 

Elastic deformation curve 

M  0.486 0.371 0.445 0.236 

F  1.000 1.000 1.000 1.000 

MF  0.486 0.371 0.446 0.236 

 Plastic deformation curve 

M  0.333 0.333 0.333 0.333 

F  1.000 1.000 1.000 1.000 

MF  0.333 0.333 0.333 0.333 

 

Table 2.5 Transformation factors for a beam subjected to a uniformly distributed 

load. From Johansson and Laine (2012a). 

 

Uniformly distributed load on beam element 

  
 

 
 

 
 

 

Elastic deformation curve 

M  0.504 0.406 0.483 0.257 

F  0.640 0.533 0.600 0.400 

MF  0.788 0.762 0.805 0.642 

 Plastic deformation curve 

M  0.333 0.333 0.333 0.333 

F  0.500 0.500 0.500 0.500 

MF  0.667 0.667 0.667 0.667 
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Table 2.6 Transformation factors for a plate subjected to a uniformly distributed 

load, based on Augustsson and Härenstam (2010). 

 

 

 

 

 

 

 

 

 

 

Uniformly distributed load on slab element 

 

w 

a 

 

 

w 

a 

 

 Elastic deformation curve 

M  0.250  

F  4/
2
  

MF  0.617  

 Plastic deformation curve 

M  (1+a/w)/6 (1+a/w)/6 

F  (1+a/2w)/3 (1+a/2w)/3 

MF  (1+a/w)/(2+a/w) (1+a/w)/(2+a/w) 
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3 Parametric beam study 

3.1 Introduction 

This section is a continuation of the researches presented in the previous 

Master’s Theses, Andersson and Karlsson (2012) and Carlsson and Kristensson (2012), 

where two different reinforced concrete beams, subjected to impulse loading, were 

analysed. The analyses were based on the method presented in Johansson and 

Laine (2012a) which allows for a simple and straight forward assessment of the 

deformation of impulse loaded structures on the basis of the energy equilibrium 

condition, see Section 2.7.5. In this method only the reinforcement at the bottom edge 

of the beam is considered while the reinforcement at the top is disregarded. However, 

in Carlsson and Kristensson (2012), it is pointed out that there might be some 

incompatibilities for this routine when not considering the top reinforcement. In order 

to get an idea of how much this simplification influences the results and to provide a 

better understanding for the assumptions in this method, a parametric study of the 

beams is carried out. The beam dimensions and the parameters that are assumed to 

have the greatest influence on its response are varied. The results in form of internal 

resistance, maximum plastic deflection and internal work are compared. The 

importance of those parameters for the impulse loaded structures is discussed in 

Section 2.7.7. The equations used in these calculations are stated in Appendix A. The 

numerical results can be found in Andersson and Karlsson (2012) and Carlsson and 

Kristensson (2012).  

The other issue studied in this chapter concerns the methodology for calculation of 

plastic rotation capacity recommended in Eurocode 2, which is presented in 

Section 2.5.3. The fact that Eurocode 2 does not clearly specify how the effective 

depth, d, and the width of the compression zone, x, should be considered, leads to 

some uncertainty. Impulse loaded structures should be provided with reinforcement 

bars at both edges as mentioned in Section 2.7.1. In case of a low reinforcement 

amount, the neutral axis can be positioned above the top reinforcement layer which 

then becomes in tension, see Figure 3.1. In such a case it is not obvious how the 

effective depth should be calculated. 
 

(a) 

As 

x 

d 

h 

b 

As 

x 
 d= h/2 

h 

As’= As 

 

As’= As 

 

(b) 

b 

 

Figure 3.1 Alternative assumption of effective depth used in this parametric beam 

study. Neutral axis is located: (a) below top reinforcement layer; 

(b) above top reinforcement layer.   

Moreover, in Eurocode 2 it is not specified for what type of section the plastic rotation 

capacity graph (Figure 2.25) has been established. For example, it is not clear if the 
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section is provided with top reinforcement or not. Thus, for the conducted parametric 

study of the beam a few alternatives, described in Section 3.2, have been controlled. 

Moreover, according to Eurocode 2, the contribution to the moment capacity of the 

compressive reinforcement can only be taken into account if stirrups with minimum 

allowable spacing are provided, which is assumed in this parametric study.  

In the Swedish code Betonghandboken, the method for calculating the plastic rotation 

capacity is established for a section with reinforcement at both edges of the beam 

while in BK 25 a section with only reinforcement at the bottom is considered. A 

further description as well as comparisons and an evaluation of these methods are 

presented in Johansson and Laine (2012a).  

 

3.2 Different interpretations of x/d 

 Case 1 3.2.1

For a section where the neutral axis is located below the top reinforcement level, as 

shown in Figure 3.2a, the effective depth d is taken as the distance from the centre of 

gravity of the bottom reinforcement to the top edge of the beam. The height of the 

compressive zone, x, is calculated with consideration to the top reinforcement, which 

results in a smaller value of x compared to when neglecting the top reinforcement.  

At the beginning of the analysis it is unknown how the top reinforcement will 

contribute to the response of the beam, i.e. whether it will be in tension or in 

compression. When the neutral axis is above the top reinforcement there are different 

ways of interpreting d. For Case 1, d is calculated as shown in Figure 3.2 regardless of 

whether the top reinforcement is in tension or not. In short, a constant value of d is 

used independently on the position of the neutral axis. 
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b 

As 

x 

d h 

As’ 

(a) 

εs’ 

εs 

 
 

b 

As 

x 

d 
h 

As’ 

εs’ 

 

εs 

(b) 
 

Figure 3.2 Assumption of effective depth for Case 1. Neutral axis is located: 

(a) below top reinforcement layer; (b) above.  

 

 Case 2 3.2.2

Another alternative of calculating the effective depth d, for a case when the top 

reinforcement is in tension, is established with regard to the reinforcement amount 

and its distance from the top edge. If the reinforcement amount is the same at the top 

and bottom of the beam, its centre of gravity will coincide with the centre of gravity 

of the uncracked section, see Figure 3.3.  

For Case 2, d is calculated with regard to the location of the neutral axis. If the top 

reinforcement is still compressed, d is assumed to be as in Case 1 (see Figure 3.2a). If 

not, d is established with regard to the reinforcement amount at both edges, 

Figure 3.3.  
 

εs 

εs’ 

b 

As 

x 
d=h/2 

h 

As’= As 

 

 

Figure 3.3 Assumption of effective depth for Case 2 when the neutral axis is 

located above the top reinforcement layer.  
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 Case 3 3.2.3

A third way of interpreting d when the top reinforcement is in tension is by 

considering the magnitude of the force acting in the reinforcement as shown in 

Figure 3.4. However, this case would result in a more complex definition of d and is 

not investigated in this parametric study.  
 

εs 

εs’ 

b 

As, σb 

 

x 

d=(σ’·c+σ·db)/(σ’+σ) 

 At, σt 

 

 
 As, σ 

 

   As’=As, σ’ 

 

 

 c 

 db 

 

Figure 3.4 Assumption of effective depth for Case 3 when the neutral axis is located 

above the top reinforcement layer.  

 

3.3 Geometry and properties of the beam 

 Introduction 3.3.1

The analysis carried out in this section is based on the dimensions which were used in 

the previous Master’s Thesis Andersson and Karlsson (2012) and Carlsson and 

Kristensson (2012). However, for these two beams the reinforcement amount, height 

of the section and concrete cover differ. In this study the properties used by 

Andersson and Karlsson (2012) for a 400 mm thick beam are applied to the 200 mm 

thick beam used by Carlsson and Kristensson (2012) and vice versa. Additionally a 

beam with a height of 300 mm is analysed.  

All geometric data are presented in Figure 3.5. It is to be noticed that the parameter c 

is the distance from the edge of the beam to the centre of the reinforcement. All 

calculations are done for a width b of 1 m. The parameters varied are further 

described in Section 3.3.2.  
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q 

L 

h 

b 

As c 

h 

b 

As c As’ 

 

 

l = 3.0 m  

b = 1000 mm 

c = 30 mm, 50 mm 

h = 200 mm, 300 mm, 400 mm 

d = h - c 

As = As’ =  10 s 150,  20 s 200  

fcd = 25 MPa 

fyd = 500 MPa 

Es = 200 GPa 

Ec = 33 GPa 

Figure 3.5 Dimensions and material properties used in the analysis.  

The considered cross sections has been analysed for only one reinforcement layer and 

for the same amount of reinforcement at both edges, which is recommended for 

structures subjected to explosions explained in Section 2.7.1. According to 

Eurocode 2, the contribution to the moment capacity of the compressive 

reinforcement can only be taken into account if stirrups with minimum allowable 

spacing are provided. In this study it is assumed that such stirrups are provided. 

 

 Parameters studied 3.3.2

In this parametric beam study three different cases are analysed according to 

Table 3.1. Moreover, the effective depth d is defined according to Case 1 and Case 2 

in Section 3.2.1 and Section 3.2.2, respectively. As an addition, the sectional height h 

and reinforcement amount As is varied according to Table 3.2. 

 

Table 3.1 Concrete cover and reinforcement for Case A, B and C. 

Case Concrete cover, c 

[mm] 

Reinforcement 

Case A 50 Top and bottom reinforcement. 

Case B 50 No top reinforcement. 

Case C 30 Top and bottom reinforcement. 
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Figure 3.6 Three different sections analysed with the effective depth d according 

to Case 1. 
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d 

σ' 

Case C, x > c  

Figure 3.7 Three different sections analysed with the effective depth d according 

to Case 2. 

 

Table 3.2 Cross-sections used in the parametric beam study.  

Height, h 

[mm] 

Reinforcement bar diameter, ϕ 

[mm] 

Spacing, s 

[mm] 

200 10 150 

200 20 200 

300 10 150 

300 20 200 

400 10 150 

400 20 200 

 

3.4 Results and comparisons 

 Orientation 3.4.1

In the first stage of the study, Section 3.4.2, the relation between internal resistance 

and increasing deformation is compared for sections of Case A, Case B and Case C 

with parameters according to Table 3.1. 
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In the next part of the study, Section 3.4.3, Case A and B are in focus. For each 

studied height, the dependency of the reinforcement amount of the internal work, 

internal resistance and plastic deformation capacity is obtained and evaluated.  

The last part of the research, Section 3.4.4, aims in assessing the magnitude of 

difference when neglecting the top reinforcement. Thus, the internal work, internal 

resistance and plastic deformation capacity is presented as a ratio of Case A to B. 

In all these three sections, d is calculated according to Case 1 in Section 3.2.1. The 

results obtained from changing the interpretation of d to Case 2, according to 

Section 3.2.2, are shown in Section 3.4.5. A selected amount of the obtained graphs 

are shown and discussed. The additional results from the parametric study can be 

found in Appendix B. 

The internal work, internal resistance, plastic deformation capacity and plastic 

rotation capacity is plotted against the reinforcement amount, ρ, calculated according 

to equation (3.1). It is important to keep in mind that the reinforcement amount is 

always calculated with d according to Case 1, even for the graphs presenting Case 2.  

db

As


  (3.1) 

 

 Resistance versus deformation capacity for Case 1 3.4.2

Due to that the plastic rotation capacity has a large influence on the maximum 

deflection, the position in the plastic rotation capacity graph from Eurocode 2 for 

Case A, B and C is presented next to the internal resistance graph, see Figure 3.8 to 

Figure 3.11. The resistance-deformation relation has been established only for the 

elasto-plastic model as it reflects the behaviour of the beam in the most realistic way. 

The results for how the resistance varies with the deformation for a height of 200 mm 

and 400 mm are presented here. The graphs for a 300 mm beam and for Case 2 can be 

found in Section B.2 and B.8, respectively. 
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Figure 3.8 Internal resistance, ultimate deflection and position in the plastic 

rotation capacity graph (Eurocode 2) for a section with a height of 

200 mm and reinforcement 10 s 150. 

 

Figure 3.9 Internal resistance, ultimate deflection and position in the plastic 

rotation capacity graph (Eurocode 2) for a section with a height of 

200 mm and reinforcement  20 s 200. 
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Figure 3.10 Internal resistance, ultimate deflection and position in the plastic 

rotation graph capacity (Eurocode 2) for a section with a height of 

400 mm and reinforcement  10 s 150. 

 

Figure 3.11 Internal resistance, ultimate deflection and position in the plastic 

rotation capacity graph (Eurocode 2) for a section with a height of 

400 mm and reinforcement  20 s 200. 

For the cases with low amount of reinforcement (Figure 3.8 and Figure 3.10) the top 

reinforcement is yielding in Case A which will affect the resistance beneficially. It 

follows that the resistance of the beam without top reinforcement (Case B) is up to 

20 % lower than for Case A. For Case C, with a distance of 30 mm between the 

reinforcement and concrete edge, the top reinforcement is not yielding and therefore 

has a lower resistance in comparison to Case A, despite the increase in effective 
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depth. In the cases studied here the rotation capacity, and therefore the total deflection 

capacity, is highest for Case A and lowest for Case B.  

For sections with high amount of reinforcement (Figure 3.9 and Figure 3.11) it 

appears that disregarding the top reinforcement only slightly decreases the internal 

resistance. Introducing thinner concrete cover affects the resistance beneficially since 

it increases the effective depth. If neglecting the top reinforcement when calculating 

the deformation, errors can occur as the height of the neutral axis is influenced. 

Therefore the size of the plastic rotation capacity is affected. Due to the shape of the 

plastic rotation capacity curve from Eurocode 2, Figure 2.25, the deformation can be 

both underestimated and overestimated. 

For both the higher and lower reinforcement amounts investigated, the largest 

difference in maximum resistance is for the thinnest section of 200 mm. The 

simplification introduced by Johansson and Laine (2012a) gives lower values of 

resistance which can be considered to be on the safe side, i.e. conservative. However, 

due to the shape of the plastic rotation graph from Eurocode 2, Figure 2.25, it is more 

complicated to predict if the maximum deformation will be over- or underestimated 

and it is recommended to be careful with simplifications here.  

For the cases studied, a small reinforcement amount assures a more ductile behaviour 

of the section and larger deformation. However, this is not a general conclusion since 

the difference depends on the position in the plastic rotation capacity graph, 

Figure 2.25. Yielding of the top reinforcement, independently of the height of the 

cross section, occurs for the investigated cases with c = 50 mm and lower amounts of 

reinforcement. This assures a higher resistance as the strength of the steel is fully 

utilized. Decreasing the concrete cover to 30 mm increases the effective depth and 

also results in a higher resistance. However, it lowers the chances of the top 

reinforcement yielding why it is not always beneficial.   

 

 Rotation capacity, internal work and resistance for Case 1 3.4.3

This part of the study considers only Case A and B. The behaviour of the two types of 

sections is analysed for different reinforcement amounts and for heights of 200 mm, 

300 mm and 400 mm. The response in form of plastic rotation capacity, internal work 

and internal resistance is compiled and compared. A compilation of all the results can 

be found in Section B.3, B.4 and B.5, respectively. 

In order to visualize what a certain reinforcement amount implies, a short compilation 

of different reinforcement dimensions and spacing is presented in Table 3.3. The 

reinforcement amounts used in this rapport are underlined. 
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Table 3.3 Values of reinforcement amount for different sectional heights, 

reinforcement dimensions and spacing. The distance between the 

reinforcement and the concrete edge, c, is 50 mm. 

Height, h 

[mm] 

Reinforcement amount, ρ [%] 

Spacing of 150 mm Spacing of 200 mm 

Diameter of reinforcement bar, ϕ [mm] 

10 12 16 20 25 

200 0.35 0.50 0.89 1.40 2.18 

300 0.21 0.30 0.54 0.84 1.31 

400 0.15 0.22 0.38 0.60 0.93 

 

The response of the section can clearly be followed by studying the changes in plastic 

rotation capacity θpl when varying the reinforcement amount, Figure 3.12 and 

Figure 3.13. The calculation of plastic rotation capacity is based on the 

recommendations found in Eurocode 2 which is described in Section 2.5.3. It is worth 

to mention that the graph of the plastic rotation capacity in Eurocode 2 (Figure 2.25) 

does not provide exact values and the user has to approximate the values, which can 

lead to different interpretations. The equations used in these calculations are stated in 

Appendix A and the numerical results can be found in Andersson and Karlsson (2012) 

and Carlsson and Kristensson (2012). 

 

Figure 3.12 Plastic rotation capacity θpl vs. reinforcement amount ρ for a section 

with a height of 200 mm (Case 1). 
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Figure 3.13 Plastic rotation capacity θpl vs. reinforcement amount ρ for a section 

with a height of 400 mm (Case 1). 

The maximum value of the plastic rotation capacity, which corresponds to 

x/d = 0.159, can clearly be spotted as a sharp deviation in the graphs. There is a clear 

connection between the graph of the maximum deformation and plastic rotation 

capacity. Simultaneously with increasing the reinforcement amount, the concrete 

compressive zone is increasing. At the point when the reinforcement amount is 

increased so much that the yielding stops, when σ’ = fyd, a sharp change of inclination 

in the graph can be noticed. Further increase in reinforcement amount leads to 

progressive lowering of the neutral axis to the point when it reaches the centre of the 

top reinforcement which at that specific point becomes compressed, when σ’ = 0. This 

is a unique situation that corresponds to a case with no top reinforcement, and at this 

point the graphs will overlap. Further increase in reinforcement amount leads to a 

decrease in the rotation capacity which follows from the plastic rotation capacity 

function established in Eurocode 2. When the reinforcement amount reaches a value 

corresponding to the limiting ratio x/d no further development of plastic rotation 

capacity can be established. That is clearly marked with the point at the end of 

curve B where the ratio x/d = 0.45 and after this point there is no information given in 

Eurocode 2. 

Focusing on Case A in Figure 3.12, it can be noticed that for the lowest amount of 

reinforcement, the top reinforcement is in tension due to that the neutral axis is 

located above it, and it is yielding. The section with top reinforcement, Case A, 

reaches the maximum plastic rotation value faster than section without top 

reinforcement, Case B. The reason for this is that the height of the compressive 

concrete zone is increased when the top reinforcement is introduced.  

The internal energy capacity of a structure can be calculated as the area under the 

resistance-deformation graph, according to equation (3.2). The internal energy is 

therefore depending on both the internal resistance R and the total deformation u.  
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For very high amounts of reinforcement, Case A shows a higher internal energy, 

which is beneficial for impulse loaded structures, see Figure 3.14 and Figure 3.15. 

However it should be noticed that the reinforcement amount, for the impulse loaded 

structures, should not exceed a maximum recommended value. Different authorities 

indicate different limits, depending on the proposed calculation methodology. 

According to Fortifikationsverket (2011) the maximum amount of reinforcement 

should be limited to 0.5 % while MSB (2009) considers 1.1 % to still be sufficient to 

assure a ductile behaviour of the structure. Eurocode 2, on the other hand, does not 

provide any information for x/d > 0.45.  

 

Figure 3.14 Internal work vs. reinforcement amount ρ for a section with a height of 

200 mm (Case 1). 

 

Figure 3.15 Internal work vs. reinforcement amount ρ for a section with a height of 

400 mm (Case 1). 
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For Case B with a height of 400 mm the increase of the internal work starts to 

stagnate after around 0.8 % amount of reinforcement, which can be noticed in 

Figure 3.15. This happens due to that the maximum deformation decreases 

(Figure 3.13) and the maximum resistance increases (Figure 3.17) simultaneously 

creating a total internal work which is more or less constant with the reinforcement 

amount. 

 

Figure 3.16 Internal resistance vs. reinforcement amount ρ for a section with a 

height of 200 mm (Case 1). 

 
Figure 3.17 Internal resistance vs. reinforcement amount ρ for a section with a 

height of 400 mm (Case 1). 

For Case A with a height of 400 mm, the maximum resistance is increasing with 

higher amount of reinforcement (Figure 3.17) and the maximum deformation is 

0

100

200

300

400

500

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

In
te

rn
a

l 
re

si
st

a
n

ce
 R

m
 [
k

N
]

Reinforcement amount, ρ [%]

Rm-ro for d1 h=200

Case A

Case B

x/d = 0.159



x/d = 0.45



 
 

 

             

       

 

 

 

 

 

 

x 

d 

Case B 

' = fyd

' = 0

 
 

 

             

       

 

 

 

 

 

 

x 

d 
σ' 

Case A 

0

500

1 000

1 500

2 000

2 500

3 000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

In
te

rn
a

l 
re

si
st

a
n

ce
 R

m
 [
k

N
]

Reinforcement amount, ρ [%]

Rm-ro for d1 h=400

Case A

Case B

x/d = 0.159



x/d = 0.45



 
 

 

             

       

 

 

 

 

 

 

x 

d 

Case B 

' = fyd

' = 0

 
 

 

             

       

 

 

 

 

 

 

x 

d 
σ' 

Case A 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 56 

decreasing with a lower rate than for the case with top reinforcement (Figure 3.13), 

resulting in higher values of the internal work (Figure 3.15). This is due to that the 

height of the compression zone increases slower for the case with top reinforcement, 

which makes the maximum deformation decrease slower.  

 

 Comparison of Case A and Case B 3.4.4

A comparison between Case A and B, which is plotted in Figure 3.18 to Figure 3.23, 

is presented as a function of γ and varies with the reinforcement amount. The value of 

γ has been established for the internal resistance (equation (3.3)), ultimate plastic 

deformation (equation (3.4)) as well as internal work (equation (3.5)). For each of 

those parameters, γ is a ratio of the case with top reinforcement (Case A) to the case 

without top reinforcement (Case B). The effective depth is always calculated 

according to Case 1.  

Bm

Am
R

R

R
m

.

.  (3.3) 

where Rm.A is the internal resistance for Case A and Rm.B is the internal resistance for 

Case B. 

Brd

Ard
u

u

u
rd

.

.  (3.4) 

where urd.A is the ultimate plastic rotation for Case A and urd.B is the ultimate plastic 

rotation for Case B. 

Bi

Ai
W

W

W

.

.

1
  (3.5) 

where Wi.A is the internal work for Case A and Wi.B is the internal work for Case B. 

The parameters that change the inclination of the curves can be followed with varying 

reinforcement amount in the different graphs. Therefore, for Case A, the 

reinforcement amounts at which the top reinforcement stops to yield or becomes 

compressed can be distinguished. For Case B, the points corresponding to the upper 

and lower limits of the plastic rotation capacity can be found.  

In Figure 3.18 and Figure 3.19 there is a sharp deviation of the resistance at the point 

where the reinforcement stops to yield (when σ’ = fyd). In another point of the 

curve (when σ’ = 0) the maximum resistance for both cases is equal. At that point the 

neutral axis is positioned close to the top reinforcement, hence removing its positive 

effect and making the case similar to a case without top reinforcement.  
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Figure 3.18 Ratio of internal resistance, γRm, vs. reinforcement amount ρ. Section 

with a height of 200 mm (Case 1). 

 

Figure 3.19 Ratio of internal resistance, γRm, vs. reinforcement amount ρ. Section 

with a height of 400 mm (Case 1). 

0.9

1.0

1.1

1.2

1.3

1.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

G
a

m
m

a
 R

m
[-

]

Reinforcement amount, ρ [%]

gamma rm d1 h=200







 
 

 

             

       

 

 

 

 

 

 

x 

d 

Case B 

' = fyd

' = 0

 
 

 

             

       

 

 

 

 

 

 

x 

d 
σ' 

Case A 

Rm

0.9

1.0

1.1

1.2

1.3

1.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

G
a

m
m

a
 R

m
[-

]

Reinforcement amount, ρ [%]

gamma rm d1 h=400







 
 

 

             

       

 

 

 

 

 

 

x 

d 

Case B 

' = fyd

' = 0

 
 

 

             

       

 

 

 

 

 

 

x 

d 
σ' 

Case A 

Rm



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 58 

 

Figure 3.20 Ratio of ultimate plastic deformation, γurd, vs. reinforcement amount ρ. 

Section with a height of 200 mm (Case 1). 

 

Figure 3.21 Ratio of ultimate plastic deformation, γurd, vs. reinforcement amount ρ. 

Section with height of 400 mm (Case 1). 
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than in Case A. When increasing the height of the section, the size of this interval 

decreases. 

 

Figure 3.22 Ratio of internal work, γWi, vs. reinforcement amount ρ. Section height is 

200 mm (Case 1). 

 
Figure 3.23 Ratio of internal work, γWi, vs. reinforcement amount ρ. Section height is 

400 mm (Case 1). 
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yielding also results in a sudden change in the graph (Figure 3.23). At this point the 
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 Different interpretation of d for Case 2 3.4.5

There are different ways of interpreting the rotation capacity curve in Eurocode 2 and 

here Case 2, according to Section 3.2.2, is investigated. A compilation of all the 

results can be found in Appendix A. It is important to notice that the amount of 

reinforcement on the horizontal axis is still calculated with d from Case 1 in order to 

be able to compare the graphs.   

To understand the changes in the internal work it is preferred to analyse the 

development of the maximum plastic deformation, see Figure 3.24. For Case A, the 

sharp deviation at the interval 1.03 - 1.35 % can be noticed.  This corresponds to the 

state when the effective depth d is transferred from being the average distance from 

the top of the beam to the centre of gravity of the top and bottom reinforcement, to 

being the distance from the top to the bottom reinforcement only. The end of the first 

part of the curve for Case A, marked with the round white point, corresponds to the 

stage when the considered section, where x ≤ c, reaches the ratio x / d = 0.45, which is 

the upper limit of the function established in Eurocode 2. Attaining this value for 

Case B means no further development of plastic rotation. However, for Case A, which 

is designed depending on the location of the neutral axis, reaching this point means a 

continuation of plastic rotation development from the beginning but with a new 

effective depth and with x > c . Thus, at the triangular point the curve A becomes 

identical to the graph for Case 1. 

 

Figure 3.24 Maximum plastic deformation vs. reinforcement amount for a section 

with a height of 200 mm (Case 2). 
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Before the sharp deviation, at 1.03 %, the difference between the cases with and 

without top reinforcement is larger than for Case 1. This is due to that d is smaller for 

low amounts of reinforcement and therefore x/d becomes larger. The plastic rotation 

capacity and maximum deformation reaches a higher value, increasing the internal 

energy before the neutral axis passes below the top reinforcement. 

The internal work relations are shown in Figure 3.25 and Figure 3.26, and the 

corresponding ratios are shown in Figure 3.27 and Figure 3.28.  

 

Figure 3.25 Internal work vs. reinforcement amount for a section with a height of 

200 mm (Case 2). 

 

Figure 3.26 Internal work vs. reinforcement amount for a section with a height of 

400 mm (Case 2). 
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The largest difference in a jump in the graphs, when the transformation of d occurs, is 

for the thinnest section. For this section, similarly as for Case 1, there is a significant 

interval for which the internal work is larger for Case B, comparing Figure 3.25 and 

Figure 3.26. The differences between Case A and B decreases with increasing height 

of beam.  

The development of internal resistance for considered height is the same as in Case 1 

and the graphs are presented in Section B.11. 

 

Figure 3.27 Ratio of internal work, γWi, vs. reinforcement amount ρ. Section height is 

200 mm (Case 2). 

 

Figure 3.28 Ratio of internal work, γWi, vs. reinforcement amount ρ. Section height is 

400 mm (Case 2). 
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3.5 Concluding remarks 

When considering a statically loaded structure the maximum resistance is the critical 

parameter and here it is always on the safe side to disregard the top reinforcement. 

However, for an impulse loaded structure, the critical parameter is the internal work, 

which makes it more complicated. In this study the answer should be given to if the 

top reinforcement should be neglected or not, and how the effective depth d should be 

considered. It is obvious that omitting the top reinforcement and calculating d 

according to Case 1, presented in Section 3.2, is the simplest method for designing an 

impulse loaded structure. In most cases it can be considered conservative to neglect 

the top reinforcement. However, for a certain interval the internal energy will be 

higher for a case without top reinforcement than for a case with top reinforcement due 

to the plastic rotation capacity curve from Eurocode 2. Within these intervals the 

conservative way would be to consider the top reinforcement. Some concern should 

also be given to the yielding of the top reinforcement. If the ultimate strain of the top 

reinforcement has not been reached, it would be correct to disregard it as it does not 

influence the internal resistance in a significant way.  

Since interpreting d according to Case 2 provides higher values of the internal energy 

in certain intervals, from where the cases are identical, it can be considered 

conservative to follow Case 1. For the thinnest section it seems reasonable to use the 

effective depth defined as Case 2, up to the point when the top reinforcement stops to 

yield. For the other studied heights it is rational to use d defined as Case 2 up to the 

point when the top reinforcement becomes compressed. However such interpretation 

of effective depth would make the calculation methodology, presented in Johansson 

and Laine (2012a), more complicated to implement. 

These are the reasons why it is not recommended to define d to depend on the position 

of the neutral axis. Moreover, it is preferred not to introduce the top reinforcement in 

the calculations in order to keep the calculations as simple as possible. The design 

procedures for civil defence shelters define the minimum allowable height of the roof 

and outer wall structure to be 350 mm (Swedish shelter regulations, MSB (2009)). In 

such case, the differences in the considered concepts are much smaller than for a 

structure with a height of 200 mm. There is also upper limit for the reinforcement 

amount of 1.1 %. The difference in the results for the studied methods was largest for 

the highest reinforcement amounts, which is not the standard solution for reinforced 

concrete structures. 

The studies in this report have been performed considering steel of Class B, on the 

curve for concrete ≤ C50/60. If another curve had been considered, i.e. Class C, the 

size as well as the relationships between the different cases of maximum deflection 

would have been different. The curve chosen for the plastic rotation capacity has a 

large influence on the maximum deformation and the internal energy. However, the 

aim of the work has been to study the fundamental differences and therefore 

reinforcement of Class B has been chosen as an example.  

Finally, Betonghandboken presents a different method of receiving the plastic rotation 

capacity where the equation for θpl considers the compressive reinforcement. 

However, this contribution can only be taken into account if there are stirrups to 

prevent the compressive reinforcement from breaking.  
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4 Structural response of a 2D frame 

4.1 Introduction and method 

The aim of this study is to investigate and evaluate the reliability of the simplified 

SDOF calculations for a frame structure subjected to impulse load. This is a 

continuation of the researches conducted in the previous Master’s Theses, where a 

simply supported beam and a slab were studied. The calculation methodology is based 

on Johansson (2013). In this chapter a 2D analysis is performed. A 3D analysis of the 

structure, where two different concepts of applying the load on the structure is 

investigated, is found in Chapter 5. 

The calculation methodology is based on the principles of the SDOF system, see 

Section 2.9, adapted with regard to the properties of a frame. The SDOF system is 

solved by the use of Matlab R2013a. The results from the SDOF model are compared 

to the results obtained in FE analyses, conducted in ADINA (2011). It is assumed that 

the response obtained in ADINA simulates, in the most appropriate way, the real 

behaviour of the structure subjected to impulse load. The analyses are conducted for 

both elastic and elasto-plastic models.  

 

4.2 Geometry and properties of the studied frame 

The analysed frame structure is presented in Figure 4.1. In this section a 2D-analysis 

is performed, and the response of a 1.0 meter strip of the wall and roof section is 

studied.  

 

L 

B 

Wall 2 

EI2, m2 

Roof 

EA3, m3  

Wall 1 

EI1, m1 

1.0 m 

P(t) 

 

Figure 4.1 3D-illustration of the frame structure. 

The reinforced concrete frame has dimensions according to Figure 4.2a. The walls 

supporting the roof beam are fully fixed at the base and simply supported at the 

connection with the roof beam. The dimensions of the considered cross section for the 

wall as well for the roof beam are presented in Figure 4.2b and the material properties 

in Table 4.1. Other parameters which are introduced in SDOF or in ADINA are 

presented in the sections describing particular method. The studied 1.0 meter strip of 

the front and back wall is, for simplicity, called for front and back column, 

respectively.  
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(a) 

B = 15 m 

L = 7 m 

EI1, m1 EI2, m2 

EA3, m3 

(b)  h = 0.2 m 

b = 1.0 m 

As = 6  10 

 

Figure 4.2 (a) Dimensions of the studied frame. (b) Dimensions of the considered 

cross section for the wall and for the roof beam. 

 

Table 4.1  Material properties of the frame. 

Part Ec 

[GPa] 

fcd 

[MPa] 

Es 

[GPa] 

fyd 

[MPa] 

Front column (1) 33 25 200 500 

Back column (2) 33 25 200 500 

Roof beam (3) 33 25 200 500 

 

In order to simplify the SDOF analysis, the roof beam is assumed to be much stiffer 

than the supporting columns. Moreover, it is connected to the columns with hinges. 

Only the case when the impulse load, P(t), acts from the side on the front column is 

considered, Figure 4.3. Thus, when the structure is subjected to the chosen impulse, 

the roof beam is only displaced horizontally and remains undeformed, see 

Figure 4.3.  
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P(t) 

u(t) u(t) 

  

Figure 4.3 Deformed shape of the frame structure subjected to the impulse at a 

certain time t. 

When assuming the properties of the structural parts of the frame, reinforcement of 

Class B is the preliminary choice. This is based on the regulations in Eurocode 2 

which allows reinforcement of Class B to be used when an ability to deform 

plastically and develop plastic hinges is required. In Section 4.7.1.4 a comparison of 

the plastic rotation capacity of the front column provided with reinforcement of 

Class B and Class C is done.  

 

4.3 Reflected impulse load 

The load is applied on the front column as a reflected impulse load, see Figure 4.4.  

P(t) 

  

Figure 4.4 Application of impulse load on the frame. 

The shape and magnitude of the chosen impulse load, as well as its duration, is 

assumed to be according to Figure 4.5 and Table 4.2. This load corresponds to about 

500 kg TNT at 50 meters distance.  
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 t [s] 

P [kPa] 

 Ppeak   

 tpeak  t1 

 

Figure 4.5 Properties of the chosen impulse load. 

 

Table 4.2  Parameters for the chosen load. 

Ppeak 

[kPa] 

tpeak 

[s] 

t1 

[s] 

60 0.00025 0.25 

The first branch, in the pressure-time curve is assumed to be inclined. The time for 

which the pressure reaches its maximum value, tpeak, is 1/100 of the duration of the 

impulse t1. This assumption is made since ADINA does not manage to find the 

solution for a case with a completely vertical branch, which can also be used to 

symbolise the development of the impulse load. 

 

4.4 Adaption of frame into SDOF system 

4.4.1 Introduction 

In order to describe the structural behaviour due to an impulse load, the studied frame 

is analysed with regard to its local and global response. The concept of dividing the 

SDOF system into a global and local model is based on Johansson (2013). 

The analysis of the local response is made for the front column, as it is not only the 

most exposed element but it is also provided with a relatively low mass compared 

with the whole structure. Thus, the initial behaviour of the front column is critical for 

the frame structure, which makes it important for the study. 

In the global analysis the whole frame is considered as a structure. This means that 

not only the front column withstands the impact but also the roof beam contributes 

with its mass and the back column contributes with its mass and its stiffness.  

A description of the central difference method as well as the calculations of the 

response models used for the elastic and elasto-plastic cases are described in 

Appendix D. The parameters used in the following sections can be found in 

Section E.1.   
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4.4.2 Local SDOF model 

4.4.2.1 Orientation 

In the local SDOF model only the response of the front column, with mass m1 and 

stiffness EI1, is considered. The boundary conditions of the local model are presented 

in Figure 4.6 where the top of the column is assumed to be restrained in the horizontal 

direction. This assumption is based on the fact that at the beginning of the loading, the 

horizontal displacement at the top of the frame is very small and can be disregarded, 

Johansson (2013). Further theoretical explanations behind the structural behaviour of 

the model can be found in Appendix C. 

 

L/2 

L/2 

 u2(t) 

 P(t)  P(t) 

L/2 

L/2 

 u1(t) 

 αu1(t) 

 

Figure 4.6 Local response model for the front column of the frame. The 

deformation, u2, is measured in the middle of the column.  

 

4.4.2.2 Elastic response 

When using the elastic response model, Figure 4.7, in this study of the local 

behaviour, the stiffness for state II, k1, is used. With the assumed boundary 

conditions of the local model and moment of inertia for the cracked section III, the 

stiffness in state II is calculated as 

31

192

L

IE
k IIc 
  (4.1) 

where III is the moment of inertia calculated according to equation (E.4) and Ec can be 

found in Table 4.1. 

 
 
 

k1 

R 

u 

 

Figure 4.7 Elastic response model. 
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4.4.2.3 Elasto-plastic response 

The elasto-plastic response of the local front column follows a trilinear model as 

shown in Figure 4.8. This phenomenon is due to the fact that the structure has the 

ability to develop two plastic hinges, one at the fixed support and one in the span. 

 
 
 

Rmf 

Rms 

k1 

R 

u 

k2 

 

Figure 4.8 Trilinear, elasto-plastic model. 

The inclination of the first branch in the elasto-plastic response model is obtained 

according to equation (4.1) and corresponds to the stiffness in state II for a structure 

with one fixed edge and one simply supported. The first point of deviation in 

Figure 4.8 describes that the ultimate resistance at the fixed support, Rms, is reached. 

Rms is calculated as 

L

M
R rd

ms




8
 (4.2) 

where Mrd is the moment capacity of the section calculated according to 

equation (E.12). 

Reaching the point Rms is followed by a significant decrease in stiffness due to a 

change in boundary conditions. When the maximum capacity of the fixed support is 

reached, the plastic hinge starts to develop, Figure 4.9b. Due to the plastic hinge the 

restraint at the fixed support does not prevent rotation any longer and the structure 

changes boundary conditions from fully restrained at one support and simply 

supported at the opposite one, to simply supported at both edges, as shown in 

Figure 4.9c. 

Now, the stiffnessis changed to k2 considering the new simply supported boundary 

conditions, and calculated as  

32
5

384

L

IE
k IIc




  (4.3) 

where III is calculated according to equation (E.4) and Ec can be found in Table 4.1. 

The ultimate capacity of the column is reached when the maximum resistance at the 

critical section in the span, Rmf, is developed according to equation (4.4). Rmf is the 

ultimate resistance of the section when a plastic hinge is developed in the field as 

illustrated in Figure 4.9d. 
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where Mrd is calculated according to equation (E.12). 

 

(a) (b) 

q q 

q q 

(d) (c) 

 

Figure 4.9 (a) Boundary conditions of the studied structure. (b) Formation of 

plastic hinge when the maximum capacity is reached at the fixed 

support. (c) Transformation of boundary condition from fixed to simply 

supported. (d) Formation of plastic hinge in span. The plastic hinges 

are marked with black points. 

To simplify the calculations, a bilinear elasto-plastic response model can be 

considered, as shown in Figure 4.10. The results obtained, by employing this 

response model in the SDOF system shows to be significantly different comparing 

to the results obtained in the FE analysis. This problem is further described in 

Section 4.7.1.  

 
 
 

k1 

u 

R 

Rmf 

 

Figure 4.10 Bilinear, elasto-plastic model introduced in the study of the local 

response. 

 

L

M
R rd

mf




12
 (4.4) 
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4.4.2.4 SDOF system 

For the local response, when transforming it into an SDOF system, the system point 

is chosen to be located in the mid span of the front column, see Figure 4.11a. The 

resistance of this section is used in the structural response model. However, it is 

worth to mention that this position of the system point does not match the point 

where the maximum moment and thus maximum deformation is obtained, 

Figure 4.11b. 

 

0.5 L 0.5 L 

(a) 

 ~0.575 L ~0.425 L 

(b) 

~0.575 L ~0.425 L 

Ms= Mrd 
Mf= Mrd 

 

Figure 4.11  (a) Assumed deformation and location of system point for the SDOF 

system. (b) Deformation and location of the plastic hinges as well as 

moment distribution in ultimate limit state. 

The equation of motion with the appropriate transformation factors for the local 

response is 

)t(P)u(Rum FKm  1  (4.5) 

When dividing equation (4.5) by κF and introducing κk = κF according to Section 2.9 as 

well as introducing κmF as 

F

m
mF




   (4.6) 

the equation of motion for this local SDOF system can now be written as 

)t(P)u(RummF 1  (4.7) 

The input data for the equation of motion for the elastic, bilinear elasto-plastic and 

triliear elasto-plastic structural response is presented in Table 4.3, Table 4.4 and 

Table 4.5, respectively. The calculations of these parameters can be found in 

Section E.1 and the resistance R(u) in Section D.3. 

 

Table 4.3  Mass, stiffness and transformation factors used for the elastic model.  

Part κmF 

[-] 

m 

[kg] 

I = III 

[10
-4

 m
4
] 

k1 

[kN/m] 

Front column (1) 0.805 3 360 0.54 1 007.6 
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Table 4.4  Mass, stiffness and transformation factors used for the elasto-plastic 

bilinear model.  

Part κmF 

[-] 

m 

[kg] 

III 

[10
-4

 m
4
] 

k1 

[kN/m] 

Mrd 

[kNm] 

Rmf 

[kN] 

Front column (1) 0.607 3 360 0.54 1 007.6 37.8 64.9 

 

Table 4.5  Mass, stiffness and transformation factors used for the elasto-plastic 

trilinear model.  

Part κmF 

[-] 

m 

[kg] 

III 

[10
-4

 m
4
] 

k1 

[kN/m] 

k2 

[kN/m] 

Mrd 

[kNm] 

Rms 

[kN] 

Rmf 

[kN] 

Front 

column 

(1) 

0.607 3 360 0.54 1 007.6 403.0 37.8 43.3 64.9 

 

4.4.3 Global SDOF model 

4.4.3.1 Orientation 

The global response is simulated according to the model in Figure 4.12a, and it is 

described by the response of a cantilever. The stiffness of this cantilever, EI, as well 

as its mass, m, is a combination of both the front and back column. The contribution 

from the roof beam to the model is its concentrated mass, m3, at the top of the 

cantilever. All together, the global response is the sum of the response of the front 

column directly exposed to an impulse load and the back column loaded with the 

force transferred by the roof beam, Figure 4.12b.  

 

L 

EI1 + EI2 

m1+ m2 

m3 

P(t) 

(b) (a) 

 L 

P(t) 

 L 

 Front column  Back column 

 EI1  

 m1 

 EI2 

 m2 

u1(t) u1(t) u1(t) 

 

Figure 4.12 (a) Assumed model for the simulation of the global response and its 

deformation u1. (b) This model is the sum of the response of the front 

and back column, according to Johansson (2013). 
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4.4.3.2 Elastic response 

When the elastic response model is considered, the stiffness for the front column, 

k1,fr, and back column, k1,ba, is described according to equation (4.8) and 

equation (4.9), respectively and corresponds to the stiffness in state II. 

where III is the moment of inertia of the cracked section calculated according to 

equation (E.4) and Ec can be found in Table 4.1. 

 

4.4.3.3 Elasto-plastic response 

In this Master’s Thesis an attempt has been made to implement the SDOF system for 

a frame simulated with an elasto-plastic model, but the response of the studied 

structure has been proven to be more complicated than expected.  

The static structural response model of the elasto-plastic global model has in the 

FE analysis shown a trilinear behaviour due to the two plastic hinges that can be 

developed at the fixed support and at the back. However, when this static structural 

response model is used in the SDOF calculations for the considered load, the response 

is still elastic, while the FE analysis shows some plastic deformations. The results, 

investigations and discussion of this behaviour can be found in Section 0 

For simplicity, the elastic structural response model is used for the elasto-plastic 

global model since they show the same response for the considered load. 

  

4.4.3.4 SDOF system 

When transforming the structure into a SDOF system it should be noticed that the 

deformation u is the same for the front column, roof beam as well as for the back 

column, see Figure 4.13. The system point for which the deformation is calculated 

by using a SDOF system is located at the free edge for both columns and in the 

centre of the concentrated mass for the roof beam.  

 

  

3

8

L

IE
k IIc

1,fr


  (4.8) 

3

3

L

IE
k IIc

1,ba


  (4.9) 
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m1 

k1,fr 

 

m2 

k1,ba 

 

m3 

 

 u1(t)  u1(t)  u1(t) 

 

Figure 4.13 Position of the system point which is represented by the grey point. 

Deformation in the system point is the same for all members in the frame 

structure.  

In the global analysis, each member of the frame contributes, in a certain degree, to 

the total response of the structure. Thus, the equation of motion can be described as 

the sum of the contributions from each part of the frame adapted by using the 

appropriate transformation factors. The equation of motion for the global model can 

be expressed as 

))(()()( tPukum
n

ii

F

n

ii

ik

n

ii

im 


    (4.10) 

where n is the number of the members in the structure. 

When the model and the assumptions for the SDOF system are made, the 

transformations factors can be introduced. The transformations factors, together 

with the input data for the mass and stiffness used in the SDOF calculations for the 

elastic response are presented in Table 4.6. The calculations of these parameters can 

be found in Section E.1. The transformation factor for the mass of the roof beam is 

1.000, but the transformation factors for the stiffnes and force are put to zero since 

the roof beam is connected with hinges to the columns and does not restrain the 

movement of the frame in any way.  

 

Table 4.6  Mass, stiffness and transformation factors used for the elastic model.  

Part κm 

[-] 

m 

[kg] 

κk  = κF 

[-] 

I = III 

[10
-4

 m
4
] 

k1 

[kN/m] 

Front column (1) 0.257 3 360 0.400 0.54 41.9 

Back column (2) 0.236 3 360 1.000 0.54 15.7 

Roof beam (3) 1.000 7 200 0 0.54 0 
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4.4.4 Combination of the global and local SDOF model 

So far, the calculation method for the resulting deformation has been introduced 

separately for the local, initial, response and for the global response. For the local 

response the system point is located in the mid span of the front column and the 

deformation at the top of the column is neglected. For the global response, the system 

point is placed at the top of the column, where the biggest deformation is obtained. In 

order to obtain the actual deformation in the middle of the front column, a 

combination of the two models is made in this point.  

For statically loaded structures, the magnitude of deformation in each point of the 

structure can be calculated. Recalling from the elementary case, the deformation at the 

free edge of a cantilever, u1, shown in Figure 4.14, is described as 

EI

qL
u

8
=

4

1
 (4.11) 

The deformation αu1 at the distance a from the fixed edge is described as 

)
L

a

L

a
(

EI

Lqa
u

2

222

1

4
6

24
=   (4.12) 

When the distance a is equal to L/2, the deformation can be further expressed as 

EI

qL
u

384

17
=

4

1  (4.13) 

By a comparison of the deformations at the free edge and in the middle of the coumn, 

the factor α, describing the relation of those two deformations is received as 

48

17
=  (4.14) 

 
 u1 

 αu1 

L/2 

a=L/2 

 q 

 

 Figure 4.14 The deformation in the middle of the column is a factor α times the 

deformation at the free edge. 

The deformation in the middle of the column in the frame structure, u2.tot (t), can be 

described as the sum of the local deformation u2 (t) and the deformation, for the same 

point, in the global model, αu1(t). This concept is presented in the Figure 4.15 and can 

be expressed as 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 76 

)t(u)t(u)t(u tot. 122   (4.15) 
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L/2 

 u2(t) 

 P(t)  P(t) 

L/2 

L/2 

 u1(t) 

 αu1(t) 

 

 Figure 4.15 The total deformation in the middle of the front column for the frame 

can be approximated as the sum of the deformation of the local response 

and the global response in that point.  

 

4.5 Modelling in ADINA 

The FEM-analyses are conducted in the program ADINA (2011). When choosing the 

methods of modelling in this program, the recommendations from previous Master’s 

Theses are followed. This subject is not studied in depth in this Master’s Thesis, as the 

main focus is to adapt the SDOF system to the response of the frame structure. The 

input files for the elasto-plastic frame model is presented in Section H.1. 

When performing the dynamic analyses, two methods with two integration schemes 

are available. One is implicit, where Newmarks’s constant-average-acceleration 

method with δ=0.5 and α=0.25, is used. The other method is an explicit method, 

which is a special case of Newmark’s method for which δ=0.5 and α=0. The solution 

for this method is stable and delivers reliable results only when a sufficiently small 

time step is provided. This means that the chosen time step should not be larger than a 

certain critical time step, according to Bathe (1996). One example, for which this 

method is used, is the central difference method, explained in Appendix D. This 

method is beneficial to use for the central difference method as the explosion pressure 

increases almost instantaneously, within a very short time span, which provides very 

short time steps. Moreover the central difference method works well when the lumped 

mass is introduced (Bathe (1996)), which fits the principles of the SDOF system 

method. Carlsson and Kristensson (2012) have proved that the dynamic analysis 

which employs the implicit method provides results in agreement with the results 

obtained from the hand calculations. The explicit method, on the other hand, delivers 

a solution which differs in both magnitude and frequency. These are the reasons 

which govern the implicit method in the FE analysis and explicit method in the SDOF 

system. 

For both models, local and global, 2D beam elements with three integration points 

along the height of the cross section are used, Figure 4.16. 
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fyd 

 

fyd 

  

Figure 4.16. Stress distribution in ADINA for three integration points according to 

Augustsson and Härenstam (2010). 

In order to simulate different behaviour of reinforced concrete and assure more 

comprehensive understanding of such a complex material, two material models are 

studied in ADINA. The first model is an elastic isotropic material model, which 

simulates the response before the yielding strength of the material is reached. The 

second model is an elasto-plastic bilinear material model.  

The input parameters for the elastic and elasto-plastic material model is equivalent to 

Young’s modulus, EII, which is calculated as 
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10640

10540
4

4

.
.

.
E

I

I
E I

a.I

II

II 









 (4.16) 

where III is the moment of inertia for the cracked section presented in Table 4.3 and 

II.a is the moment of inertia for the uncracked section calculated according to 

Section E.1. EI is Young’s modulus in the state I which can be found in Table 4.1. 

Moreover, for the elasto-plastic material model a yield limit must be introduced. In 

case of 2D beam elements with three integration points, where the stress varies 

linearly across the section, the fictional yield stress is calculated according to 

Figure 4.16 as 

MPa 685
62001

10837
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/)..(
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el

rd
yd 




  (4.17) 

where Mrd is the moment capacity of the section found in Table 4.4 and calculated 

according in Section E.1 and Wel is elastic section modulus. 

When discussing the elasto-plastic material model, it is worth to mention that ADINA 

has difficulty to find a solution for the same time step size as used for the elastic 

material model. Thus, for the elasto-plastic analysis it is reasonable to increase the 

number of time steps. 

Modelling with elasto-plastic material makes the analysis more complicated and 

demanding. However, by implementing this model, the results, in good agreement 

with the real behaviour of concrete structures, are obtained. 

For the local response, the beam with restrains according to Figure 4.6 is modelled. 

The number of elements is chosen as 30. For the global analysis a model of the frame 

structure where all members are divided into 30 elements is used. For the frame 
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model, the connections between the columns and the roof beams are modelled as rigid 

links. Rigid links provide a restraint between the master node (node at the top of the 

column) and slave node (node at the edge of the roof beam). When the structure is 

subjected to loading, the nodes are displaced. The slave node translates so that its 

distance to the master node is constant. The rotation of the slave node is the same as 

the rotation of the master node, according to ADINA manual. In general, the 

introduction of rigid links, where only translations are allowed, provided a connection 

that corresponds to the restrains for a simply supported element. 

 

4.6  Results of the elastic model 

4.6.1 Local elastic model 

The local elastic front column with corresponding material model is shown in 

Figure 4.17. The results obtained from the SDOF calculations, hand calculations and 

the analysis in ADINA agrees well which can be seen in Figure 4.18. Thus it can be 

stated that the methodology proposed in Johansson (2013) for the local elastic 

response is reliable. The hand calculations can be found in Section E.2.  

                                                            

 u2(t) 

 P(t) 

(b) (a) 

 ε 

 σ 

 

 Figure 4.17  Illustration of: (a) the local SDOF and FE model as well as the 

deformation u2(t); (b) the elastic material response model.  
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Figure 4.18 The deformations obtained in the local analysis of the frame subjected to 

an impulse load of 60 kPa and 0.025 s. Both the material and the 

structural response are elastic.  

It can be noticed that the SDOF system provides a smooth curve which is not fully the 

case for the curve from the FE analysis. The reason for the unevenness in the FE 

analysis is the fact that ADINA considers several bending modes. The SDOF system, 

on the other hand, only uses the first bending mode, see Section 2.9.1. 

The hand calculations, which can be found in Section E.2, give a very close 

estimation of the maximum deformations obtained in the SDOF and FE calculations. 

This implies that the load can be seen as a characteristic impulse load for this 

structure. The γI-value is equal to 1.0, meaning that the hand calculations do not need 

to be modified.  

 

4.6.2 Global elastic model 

The global SDOF model and the elastic material response model are shown in 

Figure 4.19. The elastic deformations of the global model obtained with the SDOF 

model, the FE analysis and the hand calculations can be seen in Figure 4.20. The hand 

calculations can be found in Section E.2. 
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 Figure 4.19  An illustration of: (a) the global SDOF model and the deformation 

u1(t); (b) the global FE model and the deformation u1(t); (c) the elastic 

material response model.  

 

Figure 4.20 The deformations obtained in the global analysis of the frame subjected 

to an impulse load of 60 kPa and 0.025 s. Both the material and the 

structural response models are elastic.  

The magnitude of the deformations agrees well for the FE model, the SDOF model 

and the hand calculations. Since the hand calculation agrees well, the load can be seen 

as a characteristic impulse load for this structure. It can be noticed that the SDOF 

solution shows a slightly higher frequency than the FE analysis.  The unevenness in 

the FE analysis is due to that ADINA considers several bending modes while the 

SDOF model considers only first one.   

 

4.6.3 Combination of the local and global elastic model 

When comparing the local and global elastic models, Figure 4.21, some differences 

can be found. The frequency for the local model is about ten times larger than for the 

global model. This means that for each sway of the whole frame, the front column 

manages to sway ten times. This is a consequence of the higher mass and lower 
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stiffness of the global model. In Section E.2.1 the calculations of the frequency for 

both cases can be found. 

 

Figure 4.21 The local and global deformations obtained from the SDOF models 

when the frame is subjected to an impulse load of 60 kPa and 0.025 s. 

Both the material and the structural response models are elastic.  

The local model aims to simulate the response in the initial stage of the loading when 

the displacement of the top of the column is relatively small, which can be seen in 

Figure 4.21. Thus, the support at the top of the local model can be seen as simply 

supported and the simplification of the local model should be realistic.  

The response in the middle of the front column when combining the global and local 

SDOF model is presented in Figure 4.22. The combination of the SDOF models is 

carried out according to Section 4.4.4. The corresponding deformation obtained in the 

FE analysis is shown in Figure 4.23.  
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Figure 4.22 A combination of the local and global deformations due to an impulse 

load of 60 kPa and duration of 0.025 s. Both the material and the 

structural response models are elastic.  

 

Figure 4.23 The deformations, u2, obtained in the FE analysis for the considered 

impulse load of 60 kPa and duration of 0.025 s. Both the material and 

the structural response models are elastic.  

When comparing the results obtained by implementing these two methods, 

Figure 4.24, the magnitude of the deformation as well as the frequency seems to agree 

quite well. The SDOF model provides results on the safe side and the combined 

SDOF method presented in Section 4.4.4 seems to give an approximate estimation of 

the behaviour in the middle of the front column. However, a significant difference in 

deformation magnitude is obvious at certain intervals. The difference can for example 
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easily be spotted between 2 and 5 seconds where the FE model shows a decrease in 

magnitude while the SDOF model does not. It seems that the FE structure possesses 

some damping which decreases the magnitude of the deformation at certain intervals. 

This phenomenon is not investigated further in this Master’s Thesis since it is 

assumed not to be critical for the structure. 

 

Figure 4.24 The deformations obtained from the SDOF system and FE modelling in 

the global analysis for the middle of the front column. Both the material 

response and structural response are elastic.  

 

4.7 Results of the elasto-plastic model 

4.7.1 Local elasto-plastic model 

4.7.1.1 Response of the structure 

The elasto-plastic model, shown in Figure 4.25, proved to be more complicated than 

the elastic model. The development of the deformation over time for the impulse 

loaded front column obtained in the FE analysis and SDOF system is presented in 

Figure 4.26. The hand calculations can be performed in different ways and are further 

described in Section 4.7.1.2. 
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 Figure 4.25  Illustration of (a) the local SDOF model and the deformation u2(t), and 

(b) the elasto-plastic material response model.  

 

Figure 4.26 The deformations obtained in the local analysis of the frame subjected to 

an impulse load of 60 kPa and 0.025 s. Both the material and the 

structural response are elasto-plastic.  

The studied front column shows elastic response at the beginning of the loading. After 

the yield strength has been reached the deformation becomes plastic until the structure 

starts to sway back again. The following oscillations are elastic but since the column 

has gained some plastic deformation, the structure will oscillate elastically at a higher 

position in the graph.  

The overall shape of the deformation curve is the same in the FE analysis as in the 

SDOF calculations. However, some differences in magnitude of deformation and 

frequency are obvious. The reason for the differences may lie in the choice of 

transformation factors in the SDOF model. For both the plastic and elastic part of the 

SDOF response model, plastic transformation factors have been used. A solution to 

this problem could be to vary the transformation factors in time with transformation 

factors obtained from the FE analysis, proposed by Andersson and Karlsson (2012). 

This has however not been evaluated in this Master’sThesis.  
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The most evident difference comparing the response of the studied front column to the 

response of a simply supported beam is the higher magnitude of deformation at the 

first peak. 

This study has shown that the structural and material response models do not always 

have the same shape. To use the same shape is correct for studies of simply supported 

beams where both the structural and material models are bilinear. However, for the 

studied column, with one fixed edge and one simply supported, the material model is 

bilinear while the structural response model has been proven to be trilinear. This is 

due to the fact that the local front column can develop two plastic hinges, one at the 

fixed support and one in the span. 

A compilation of the material response models and the structural response models for 

the two types of beams are presented in Table 4.7. In order to understand the theory of 

plasticity and plastic hinges, the reader is referred to Section 2.5.  

 

Table 4.7 A summary of the material response models and structural response 

models for a simply supported beam and a beam with one edge fully 

fixed and the other simply supported. 
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The structural response model of the front column subjected to the considered impulse 

load is presented in Figure 4.27. The development of resistance over time is illustrated 

in Figure 4.28 where the stiffness and plastic hinges are described in Table 4.8. The 

resistance follows the arrows until the end of the line where they start to oscillate 

elastically. The response model used for the SDOF model is programmed in Matlab 

according to Appendix D with the corresponding response model described in 
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Section D.3.4. The concept of impulse loaded structures with a trilinear response 

model is described in Section C.3. 

 

Figure 4.27 Structural response of the local frame model subjected to an impulse 

load of 60 kPa and 0.025 s in the SDOF analysis. Both the material and 

the structural response are elasto-plastic.  
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Figure 4.28 Illustration of the response of the local frame model. The arrows 

indicate the development of resistance and deformation, R(u), over time. 

When the end of the line is reached the deformation starts to oscillate 

elastically. 
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Table 4.8 Description of the notations in Figure 4.28. 

Notation Description 

k1 
Stiffness of the local front column with one fixed edge and one simply 

supported. 

Rms Plastic hinge formed at fixed support. Stiffens of beam is changed to k2. 

k2 Stiffness for a simply supported beam. 

Rmf Plastic hinge formed in the span. Ultimate resistance is reached. 

 

The studied front column is a statically indeterminate structure since it develops two 

plastic hinges in ultimate limit state. Each change of inclination in the structural 

response curve corresponds to reaching the maximum resistance at a certain critical 

section, as described in Section 4.4.2.3. The first change of stiffness simulates 

developing maximum capacity at the fixed support. For the studied structure this 

happens at a value of 43.3 kN. The second hinge occurs in the span and ultimate 

resistance for the whole structure is reached at 65 kN, see Figure 4.27. 

After both the fixed support and the span have yielded, the deformation increases 

further while the resistance is constant. An increase in deformation after reaching the 

maximum resistance is possible since the structure has a certain plastic rotation 

capacity. When the structure starts to sway back, before reaching the ultimate plastic 

deformation, the structure has a stiffness corresponding to k1. After a certain point, 

yielding at the fixed support occurs in the opposite direction and the stiffness changes 

to k2. At the point where the structure switches direction of swinging again, at a 

resistance of -38 kN, the structure begins to oscillate back and forth, following this 

line with a stiffness of k1.  

 

4.7.1.2 Hand calculations 

Due to the trilinear response model of the local front column, there are different ways 

of performing the hand calculations. The main concept of estimating the deformations 

are described in Section A.2.  

The elasto-plastic estimation of the deformation uep can be calculated according to 

equation (4.18). 

m

km
plepelepep

mR

I

k

R
uuu

22

2

,,   (4.18) 

where Ik is the characteristic impulse load, m and k is the mass and stiffness and Rm is 

the resistance. 

However, this equation is created for a bilinear case and therefore the stiffness has to 

be estimated for the trilinear case. Two extreme cases are created according to 

Figure 4.29 where the stiffness is taken as the stiffness for a beam with one fixed edge 
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and one simply supported k1, as well as the stiffness, k3. The stiffness that would give 

the correct results should lie in between these values.  
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Figure 4.29 (a) Stiffness of the elasto-plastic local front column. (b) Simplified 

bilinear case with stiffness k1 (continuous line). (c) Simplified bilinear 

case with stiffness k3 (continuous line). 

The non-modified values of the hand calculations together with the SDOF 

calculations and FE analysis in are shown in Figure 4.30. The hand calculations can 

be found in Section E.3.1. Since the true value should lie in between the lines it can be 

seen that the estimation correspond well with the SDOF calculations and is on the safe 

side of the FE analyses.  

 

Figure 4.30 The deformations obtained in the local analysis, in the middle of the 

column, for the elasto-plastic case.  

 

4.7.1.3 Comparison of bilinear and trilinear response models 

The true structural behaviour of the studied front column follows a trilinear response 

model. However, since a trilinear response model is more complicated than a bilinear, 
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a comparison is done in order to investigate the differences in the obtained 

deformation. All calculations in this comparison are carried out in Matlab R2013a and 

the SDOF models and response models are created according to Section E.3. 

The bilinear model is created with a stiffness identical to the stiffness before any 

plastic hinge is formed, k1. The ultimate resistance is the same as for the trilinear 

model, Rmf. The conceptual deformations and corresponding response models for the 

bilinear and trilinear case can be seen in Figure 4.31.  
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Rmf 
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Figure 4.31 (a) Deformation for trilinear (continous line) and bilinear (dashed line) 

response. (b) Trilinear and bilinear (dashed line) response models. 

In order to further understand the behaviour of the two models, Figure 4.32 and 

Figure 4.33 shows the considered response models and resulting development of 

deformations in time for the two cases. The numbered points in the resistance-

deformation curve corresponds to the same numbers in the deformation graph and the 

areas W1, W2, W3 and W4 refer to the work done when reaching the corresponding 

points. The areas W1 and W2 as well as W3 and W4  are equal, meaning that the internal 

work of the two pairs equalise each other.  
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Figure 4.32 (a) Deformation in time; (b) Structural response for a bilinear response 

model. The numbered points on the resistance-deformation curve 

corresponds to the same numbers in the deformation graph. 
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Figure 4.33 (a) Deformation in time; (b) Structural response for a trilinear response 

model. The numbered points on the resistance-deformation curve 

corresponds to the same numbers in the deformation graph. 

The biggest difference between assuming a bilinear response model instead of a 

trilinear one is that the trilinear model results in a higher maximum deformation 

followed by elastic sways with a lower magnitude than the first one, see Figure 4.33a. 

In order to investigate how the deformation-time curve changes depending on the 

magnitude of the impulse load, and therefore the position in the resistance-

deformation curve, a study is carried out for three different impulse loads shown in 
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Table 4.9. The position reached in the resistance-deformation curve for each load is 

marked with a black point in Figure 4.34. 

 

Table 4.9 Loads investigated in order to compare bilinear and trilinear response 

models.  

Magnitude, P 

[kPa] 

Duration, t1 

[s] 

20 0.025 

40 0.025 

60 0.025 
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Figure 4.34 The maximum deformation in the resistance-deformation curve for the 

three different impulse magnitudes.  

The resulting deformation for the three loads as well as the resistance-deformation 

curves obtained in the SDOF system, when employing the trilinear model are 

presented in Figure 4.35 and Figure 4.36, respectively. It can be noticed that the first 

deformation peak is higher than the following only for the two largest loads. The 

reason for this is explained in the following paragraphs. 
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Figure 4.35 The deformations obtained for the three loads when the response model 

is trilinear.  

 

Figure 4.36 The resistance-deformation curves for the three loads when the response 

model is trilinear.  

When the local column is subjected to an impulse load with a magnitude of 20 kPa 

and duration of 0.025 s, the deformations are completely elastic. In this stage the 

inclination of the first branch in the trilinear model coincides with the bilinear model, 

meaning that the stiffness, magnitude of deformation and frequency is equal for these 

two cases. This is illustrated in Figure 4.37 where the work is the same for both 

models and the area under the resistance curve for the trilinear model, Wt, coincides 

-0.050

-0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

D
ef

o
rm

a
ti

o
n

, 
u

 [
m

]

Time, t [s]

20 kPa

40 kPa

60 kPa

 

 

u2 

 
                                                            

 ε 

 σ 

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

-0.05 -0.03 -0.01 0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15

R
es

is
ta

n
ce

, 
R

 [
k

N
]

Deformation, u [m]

 20 kPa

 40 kPa

 60 kPa

 
                                                            

 ε 

 σ 

 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 93 

with the area for the bilinear model, Wb. Also, the deformation in the bilinear model 

ub is equal to deformation in the trilinear model ut.  
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Figure 4.37 A comparison of a bilinear and trilinear response model for an impulse 

load with a magnitude of 20 kPa and duration of 0.025 s. 

Thus, the shape of deformation in time and the resistance-deformation curve is the 

same for both models, see Figure 4.38 and Figure 4.39. 

 

Figure 4.38 Comparison of deformation obtained by employing a trilinear and 

bilinear model for an impulse load of 20 kPa and duration of 0.025 s. 
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Figure 4.39 Comparison of resistance-deformation curves obtained by employing a 

trilinear and bilinear model for an impulse load of 20 kPa and duration 

of 0.025 s. 

When the column is subjected to an impulse load of with a magnitude of 40 kPa and 

duration of 0.025 s, the resistance and deformation in the trilinear model reaches the 

second branch, i.e. the fixed support has yielded. At this stage the trilinear model 

differs from the bilinear. The work done by the structure and the area under resistance 

curve for the two models must be the same, Wt = Wb, given that the load is a 

characteristic impulse load. As a result of the different shapes of the resistance curves, 

the deformation for the trilinear model, ut, is higher than for the bilinear model ub, see 

Figure 4.40. This means that the deformation will be underestimated when employing 

the bilinear model. The stiffness at the maximum deformations is different for the two 

models, following that also the frequency is expected to differ.  
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Figure 4.40 A comparison of the bilinear and trilinear response model for an 

impulse load with a magnitude of 40 kPa and duration of 0.025 s. 
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started to develop some plastic deformations, the resulting deformations oscillate at a 

higher position than its initial position, which can be seen in Figure 4.41. However, 

the structure simulated with a trilinear model has not reached its ultimate resistance, 

even though the fixed support has yielded and reached its resistance Rms. The first 

deformation peak is higher for the trilinear model than for the bilinear in Figure 4.41, 

which agrees with the difference in deformations in Figure 4.40. However, the 

following elastic deformations are much smaller than the value reached in the first 

peak due to the shape of the response model. 

 

Figure 4.41 Comparison of deformations obtained by employing a trilinear and a 

bilinear model for an impulse load of 40 kPa and duration of 0.025 s. 
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Figure 4.42 Comparison of resistance-deformation curves obtained by employing a 

trilinear and bilinear response model for an impulse load of 40 kPa and 

duration of 0.025 s. 

For an impulse load of 60 kPa and duration of 0.025 s, the structure simulated with 

bilinear and trilinear models reaches their ultimate resistance, Rmf, see Figure 4.43. 

Similarly as for the impulse load of 40 kPa, the deformation obtained when using the 

bilinear model is underestimated. 
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Figure 4.43 Comparison of a trilinear and bilinear response model for an impulse 

load of 60 kPa and duration of 0.025 s. 

A comparison of deformations in time as well as the resistance–deformation curves 

for the two response models is presented in Figure 4.44 and Figure 4.45, respectively.  
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Figure 4.44 Comparison of deformation obtained by employing a trilinear and a 

bilinear response model for an impulse load of 60 kPa and duration of 

0.025 s. 

 

Figure 4.45 Comparison of resistance-deformation curves obtained by employing 

trilinear and bilinear response model for an impulse load of 60 kPa and 

duration of 0.025 s. 
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deformation delivered by the more accurate, trilinear model, ut. This difference is 

especially important for a structure provided with a low value of ultimate plastic 

deformation, see Figure 4.46. For the illustrated impulse load, the bilinear model 

indicates that the structure resists the load, while the trilinear model will lead to 

collapse. The difference between the area under the bilinear and trilinear response 

model is for this case relatively large compared to the total area of the work done by 

the structure.  
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Area resulting from the difference between the 
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Figure 4.46 A comparison between the trilinear and bilinear model for a structure 

with a low value of plastic deformation capacity, urd. For the considered 

load, the trilinear model exceeds the critical value, urd, while the 

bilinear does not.  

For the studied local, elasto-plastic front column the difference in obtained 

deformation between the trilinear and bilinear model is relatively small. Therefore the 

bilinear model can be considered to give an acceptable approximation of the 

deformation for the studied case. The concept of deformation capacity is further 

discussed in Section 4.7.1.4.  

If the ultimate plastic deformation, urd, is large compared to the elastic deformation, 

uep.el, a large part of the internal energy, Wi, will be within the plastic part of the 

deformation, uep.pl. For this case, the bilinear model will give a satisfying 

approximation of the deformation. 

A real structure provides a certain amount of natural damping, thus the true 

deformation will be a bit lower than the calculated. When the purpose of the 

calculations is to perform a capacity check, the simplified bilinear model can be 

assumed, as it is simple and easy to implement. However, in order to deliver more 

comprehensive understanding of the response of this statically indeterminate structure 

it is essential to implement the trilinear response model.   

 

4.7.1.4 Plastic deformation capacities  

The trilinear structural response model of the local front column complicates the 

estimation of the plastic deformation capacity, urd. The plastic rotation at the fixed 

support begins to develop when the moment at this support, Ms, reaches the value 

that the section was designed for, Mrd.s. This is shown as stage 1 in Figure 4.47a, 

with corresponding plastic deformation capacity, urd.s, in Figure 4.47b. When the 

load is further increased, the span reaches its maximum moment capacity, Mrd.f. This 

is presented as stage 2 in Figure 4.47a. At this point the plastic rotation in the span 
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starts and the corresponding plastic deformation capacity is termed as urd.f in 

Figure 4.47b. When the fixed support has reached its limit, urd.s, failure occurs in the 

plastic hinge. This is showed as a sudden vertical jump in Figure 4.47b. After this, 

the boundary conditions and therefore the resistance of the structure correspond to a 

simply supported beam.  
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Figure 4.47 (a)Moment distribution for stage 1 and stage 2. (b) Moment-deformation 

curve with plastic deformation capacities. The dashed line corresponds 

to the response of a simply supported beam. 

In this study, a simplification has been made when estimating the plastic rotation 

capacity. The plastic deformation capacity for the structure has been assumed to 

correspond to urds which provides results on the safe side. If a bilinear model is used, 

urds should also be used, starting from when the fixed support yields, illustrated in 

Figure 4.48. 

 R 

u 
urd.s 

Rmf 

Rms 

 

Figure 4.48 For a bilinear model, urd.s should be used, starting from when the fixed 

support yields. 

The plastic deformation capacity urd.s is calculated from the plastic rotation capacity 

with regard to shear slenderness, θrd, according to Eurocode 2 where 
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plrd k     (4.19) 

The distance between the considered maximum moment section and the adjacent 

zero moment section is called L0 in the calculation of the shear slenderness λ in 

equation (4.20). In order to further calculate the factor kλ, equation (4.21), L0 is 

taken as L1 according to Figure 4.49.  

d

L0  (4.20) 

 

L1 

Ms = Mrd 

Mf = Mrd 

L2 L2 

 

Figure 4.49 Possible choices of the distance between the considered maximum 

moment section and the adjacent zero moment section. 

A check of the plastic deformation capacity was performed for the chosen load of 

60 kPa and 0.025 s. The results are presented in Table 4.10 and the calulations can be 

found in Section E.3. The check showed that the front column did not possess the 

required plastic deformation capacity for either reinforcement of Class B or Class C. 

However, it can be noticed that the plastic deformation capacity was almost twice as 

large when reinforcement Class C was used compared to Class B.  

 

Table 4.10 Comparison of plastic rotation capacity and maximum deformation 

obtained from an impulse load of 60 kPa and 0.025 s.  

Reinforcement urds 

[m] 

umax 

[m] 

Class B 0.066 0.13 

Class C 0.115 0.13 

 

4.7.1.5 Plastic strain 

In order to better understand the local elasto-plastic response of the frame the 

development of plastic strain is investigated. Plastic hinges can be formed at the fixed 

support and in the mid span, point A and B in Figure 4.50, respectively.  

 

3


 k  (4.21) 
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B 
B 

A 

A A 

A 

 

Figure 4.50 Critical sections marked with black points in the local elasto-plastic 

model.  

The plastic strain in point A and the deformation for the local model, u2, are plotted 

together in Figure 4.51. It can be noticed that there is only one main peak for the 

plastic strain in the interval 0 - 0.3 s. The peak is followed by an almost straight line, 

with insignificant changes in plastic strain. When the plastic strain is constant with 

time, it means that the response is elastic. An initiation of plastic strain means that a 

plastic hinge has been reached in point A. When the plastic strain is increasing the 

structure is swinging in the positive direction, and when it is decreasing it is swinging 

in the opposite direction. The deformation in the interval 0 – 0.3 s corresponds well 

with the changes in plastic strain.  

 

Figure 4.51 A comparison of deformation, u2, in the local model to the plastic strain, 

εpl, in point A. 
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4.7.2 Global elasto-plastic model 

4.7.2.1 Response of the structure 

The SDOF and FE model of the global elasto-plastic frame with corresponding 

material model is shown in Figure 4.52. 

                                                            

(a) (c) 

P(t) 

u1(t) 

P(t) 

u1(t) 

(b) 

 ε 

 σ 

fyd 

 

Figure 4.52  An illustration of: (a) the global SDOF model and the deformation 

u1(t); (b) the global FE model and the deformation u1(t) and (c) the 

elasto-plastic material response model.  

The deformations, u1, obtained for the global elasto-plastic model from the FE 

analysis and the SDOF model are presented in Figure 4.53.  

 

Figure 4.53 The deformations obtained in the global analysis, at the top of column in 

the frame subjected to impulse load for the elasto-plastic case.  

It can be noticed that the FE model experiences some plastic deformation since the 

centre of the oscillations is above the zero axis. The value of the maximum 

deformation also seems to decrease with time, which can be noticed especially for the 

positive deformations. This phenomenon is in disagreement with the SDOF response 

which is completely elastic.  
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The static FE analysis resulted in the resistance curve shown in Figure 4.54. However, 

the dynamic FE analysis showed that for the maximum deformation obtained in the 

FE analysis the response is expected to be elastic since the first plastic hinge 

according to the expected resistance-deformation curve, R(u), is not reached. An 

illustration of the expected resistance is shown in Figure 4.55. Nevertheless, the 

dynamic analysis showed that the deformation possesses some plastic parts.  

  

Figure 4.54 The resistance-deformation curve obtained in the static analysis of the 

frame.  
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Rm1 

R 

u 
urd 
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Figure 4.55 The maximum deformation reached, shown in the resistance-

deformation curve for an impulse load of 60 kPa and 0.025 s. The first 

plastic hinge is not reached.   

Since the FE analysis of the global frame shows some plastic behaviour, it seems that 

the static structural response model is not enough to describe the true behaviour of the 

global frame in a SDOF system. In order to better understand the behaviour of the 

global frame, the deformations at the top of the frame, u1, and in the middle of the 

front column, u2, are studied together in Figure 4.56. It can be noticed that a decrease 

in magnitude of u1 occurs after the oscillations in u2 have been magnified, i.e. before 

the intervals where some damping of the oscillations for u2 has occurred. The 
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behaviour is studied more closely, in relation to other parameters, in the following 

sections.  

 

Figure 4.56 A comparison of the deformations u1 and u2.  

 

4.7.2.2 Stress and plastic strain 

In order to better understand the global response of the frame the development of 

plastic strain and stresses for the critical sections are further investigated. The critical 

sections are those that gain the largest plastic strain and where plastic hinges are 

formed. Thus, the sections at the supports and in the mid span of the first column are 

compared and analysed, see Figure 4.57. Plastic hinges can be developed in tension 

and compression. 
 

B 

C A 

A 
C 

B 

 

Figure 4.57 Critical sections marked with black points in the global elasto-plastic 

model. 

A change in plastic strain means that a plastic hinge has been reached. When the 

plastic strain is increasing, a plastic hinge is reached in tension, and when it is 

decreasing it is reached in compression. When the plastic strain is constant with time, 

the response is elastic. 
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The plastic strain for the three critical sections A, B and C in Figure 4.57 are plotted 

together in Figure 4.58. The plastic strain at the back column, point C, is very small 

compared to the plastic strain in the front column, point A. The plastic strain in the 

mid span, point B, is only changing in magnitude at the very first time interval. This 

shows that point B is mostly relevant for the initial stage in the frame analysis, i.e. the 

local model. The main focus in this analysis is on the plastic strain at the fixed support 

of the front column, since it is expected to have the main influence on the behaviour 

of the global frame structure.  

 

Figure 4.58 Plastic strain obtained in point A, B and C in the global FE analysis. 

In Figure 4.59 the deformation from the FE analysis at the top of the front column, u1, 

and in the middle of the front column, u2, are plotted together with the plastic strain in 

point A.  
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Figure 4.59 A comparison of deformations u1 and u2 to the plastic strain in point A 

for a time interval of 10 seconds.  

Studying Figure 4.59 it can be noticed that there are some sudden changes in plastic 

strain around 0 to 1 seconds and 5 to 6 seconds. When analysing this time interval it is 

obvious that these changes coincide with the maximum deformations in the middle of 

the front column, u2. The intervals are magnified in Figure 4.60 and Figure 4.61. 

When u2 reaches a maximum or minimum peak, the plastic strain increases or 

decreases simultaneously.  

 

Figure 4.60 A comparison of the deformations u1 and u2 to the plastic strain in 

point A for a time interval of 0 to 2 seconds. 
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Figure 4.61 A comparison of deformations u1 and u2 to the plastic strain in point A 

for the time interval of 5 to 7 s. 

In order to get a better understanding of the deformed shape of the frame at different 

points in time a comparison is made between the graphs, see Figure 4.62. The 

deformed shapes of the frame are shown in Table 4.11. Two of the most extreme 

shapes, which occur at point 1 and 7, seem to coincide with changes in plastic strain.  

 

Figure 4.62 A comparison of the deformations u1 and u2 to the plastic strain in 

point A for a time interval of 10 seconds. The points are described in 

Table 4.11.  
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Table 4.11  The deformed shape of the global frame at the first three deformations 

peaks for u2 and at the stage when u1 is equal to u2. 

Point Time 

[s] 

Deformation 

[m] 

Deformed shape Description 

1 0.109 

 

u1 = 0.013 

u2 = 0.117  

 

u2 >> u1 

 

 

  

First maximum peak of 

u2.  

Plastic hinge at point A 

and point B is formed. 

2 0.273 

 

 

 

u1 = 0.062  

u2 = 0.022  

 

u2 < u1 

 

 

 

 

First minimum peak of 

u2. 

Plastic hinge at point A is 

formed, in opposite 

direction.  

3 0.436 

 

u1 = 0.091  

u2 = 0.120  

 

u2 > u1 

 

 

 

 

Second maximum peak 

of u2. 

Plastic hinge formed 

again at point A. 

 

4 1.075 

 

 

u1 = 0.162  

u2 = 0.137  

 

u2 < u1 

 

 

 

 

Maximum deformation 

of u2 and of u1 occurring 

at the same time.   

5 2.361 

 

 

u1 = -0.051  

u2 = 0.052  

 

u2 > u1 

 

 

 
  

Deformation peaks in 

opposite directions for u2 

and u1. 

No plastic hinge is 

formed.  

6 4.412 

 

 

u1 = 0.159  

u2 = 0.127  

 

u2 < u1 

 

 

  

Deformation peaks in the 

same direction for both 

u2 and of u1.  

7 5.695 

 

 

u1 = -0.038  

u2 = 0.073  

 

u2 > u1 

 

 

 

 

Deformation peaks in 

opposite directions for u2 

and u1. Case is more 

extreme than point 5. 

Plastic hinge is formed at 

point A.  
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To further investigate the behaviour of the global frame model the stress and plastic 

strain at the fixed support as well as the deformation at the top of the frame are 

evaluated together. The stress versus strain at the fixed support of the front column is 

plotted in Figure 4.63. The colours in the figure correspond to the same period in time 

as the plastic strain plotted in Figure 4.64 and as in the deformations shown in 

Figure 4.65 and Figure 4.66.  

 

Figure 4.63 Stress-strain relationship at the fixed support for the front column. 

 

Figure 4.64 Plastic strain development over time at the fixed support for the front 

column. 
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Figure 4.65 Deformation u2 over time for the global elasto-plastic model.  

 

Figure 4.66 Deformation u1 over time for the global elasto-plastic model.  

A further explanation of the phenomena at every colour can be found in Table 4.12. 
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Table 4.12 Description of the phenomena at different points in time.  

Colour Phenomenon Plastic strain, 

εpl 

Stress, 

σ 

Deformation, 

u2 

Red 
Elastic 

behaviour. 

Elastic behaviour, 

no plastic strain 

occurs. 

Increases. Increases. 

Green 

Plastic hinge 

has been formed 

at the fixed 

support. 

Plastic strain 

increases. 

Maximum stress 

has been reached. 

Stress is constant. 

Increases. 

Blue 

Elastic 

behaviour. 

Maximum 

deformation has 

been reached. 

Plastic strain is 

constant. 
Starts to decrease. 

Starts to 

decrease, i.e. 

swinging back. 

Orange 

Plastic hinge 

has been formed 

at the fixed 

support, frame 

is swinging in 

the opposite 

direction. 

Plastic strain 

decreases. 

The stress has 

reached its 

ultimate value in 

its opposite 

direction and is 

constant. 

Decreases. 

Pink 

Elastic 

behaviour. 

Deformation 

has reached its 

minimum value 

and its first 

negative peak. 

Plastic strain is 

constant. 

Stress is 

increasing. 

Starting to 

increase again. 

Grey 

A plastic hinge 

has been formed 

at the fixed 

support again. 

Plastic strain 

increases. 

Maximum value 

reached. Stress is 

constant. 

Increasing. 

Black 

 

Mainly elastic 

behaviour. 

Small changes 

in plastic strain 

and stress when 

maximum stress 

is reached. 

Constant. 

Increases and 

decreases 

elastically. 

Starts to 

decrease. 

Sways back 

and forth 

elastically. 

Purple Unevenness due to higher modes. 
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The plastic strain studied so far increases and decreases when plastic hinges are 

formed in the different directions. This means that when the structure is swinging in 

the positive direction, the plastic strain increases and when it is swingning in the 

negative direction the plastic strain decreases. Until now, it has been assumed that the 

plastic hinges are formed when the maximum stress is reached without any 

consideration of the history of the steel. It can be questioned if the reinforcement 

changes properties after the plastic hinges have been formed in both directions several 

times. Therefore, the accumulated plastic strain, εpl.acc, is described in equation (4.20) 

and plotted in Figure 4.67 in order to get an understanding of the total strain the 

section has been exposed to. This is however not further investigated in this report.  

 placcpl  .  (4.22) 

 

Figure 4.67 Accumulated plastic strain, εpl.acc, for point A in the global elasto-plastic 

model.  

 

4.7.2.3 Moment and damping 

In order to investigate the structural behaviour of the frame even further, the moment 

at the fixed support is investigated in relation to the plastic strain. In Figure 4.68 it can 

be noticed that the plastic strain changes when MA  > Mrd, i.e. when the maximum 

capacity for the considered section has been reached. In reality, the moment will reach 

Mrd but never exceed it. Here, the fact that the values are larger than Mrd is due to the 

size of the elements used in ADINA.  
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Figure 4.68 A comparison of the moment and plastic strain at the fixed support of 

the front column.  

In reality, a structure subjected to an impulse load experiences a certain degree of 

natural damping. A reinforced concrete structure with considerable cracking normally 

has a damping of about 3 - 5 %. In order to get further information about damping, the 

reader is directed to Carlsson and Kristensson (2012). 

Figure 4.69 and Figure 4.70 shows the moment when a modal damping of 1 % and 

5 %, respectively, is implemented. For both cases it can be noticed that the moment is 

decreased with time and is lower than Mrd after the first second. Figure 4.71 illustrates 

the plastic strain for different percentage of damping together.  

The moment within the first second still exceeds the ultimate moment resistance, even 

if a damping of 5 % is implemented. This shows that in reality, where a certain degree 

of damping will exist, the critical moments seem to occur only at the very beginning. 

However, this needs to be investigated further in order to not make any premature 

conclusions.  
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Figure 4.69 Moment at the fixed support of the front column for a modal damping of 

1 %.  

 

Figure 4.70 Moment at the fixed support of the front column for a modal damping of 

5 %.  
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Figure 4.71 Plastic strain at the fixed support of the front column for a modal 

damping of 0, 1 and 5 %. The change in plastic strain at 5.5 seconds is 

absent when damping is applied.   

 

4.7.3 Combination of the local and global elasto-plastic model 

The local and global elasto-plastic SDOF models are plotted together in Figure 4.72. 

The frequency for the local model is, similarly as for the elastic model, much larger 

than for the global model.  

 

Figure 4.72 The local and global deformations obtained from the SDOF model when 

the frame is subjected to an impulse load of 60 kPa and 0.025 s for the 

elsto-plastic case.  
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The response in the middle of the front column when combining the global and local 

SDOF model is presented in Figure 4.73. The combination of the SDOF models is 

carried out according to Section 4.4.4. The deformations obtained in the FE analysis 

are shown in Figure 4.74. 

 

Figure 4.73 A combination of the local and global deformations due to an impulse 

load of 60 kPa and duration of 0.025 s for the elasto-plastic case. 

 

Figure 4.74 The deformations, u2, obtained in the FE analysis for the considered 

impulse load of 60 kPa and duration of 0.025 s for the elasto-plastic 

case.   

When comparing the results obtained by implementing these two methods, 

Figure 4.75, the magnitude of the deformations differs between the two cases. The 

frequency, however, seems to agree quite well. The small difference in frequency is 

due to the transformation factors used.   
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The SDOF model shows a larger magnitude in the deformations than the FE model. 

On the other hand, the FE model has gained a larger plastic deformation why the 

SDOF calculations do not provide results on the safe side. As can be seen in the 

elastic model in Section 4.6.3, a significant difference in deformation magnitude is 

obvious at certain intervals.  

 

Figure 4.75 The deformations obtained from the SDOF system and FE modelling in 

the global analysis for the middle of the front column. Both the material 

response and structural response are elasto-plastic. 

Since the global elasto-plastic SDOF model is still not completely corresponding to 

the FE analysis, this combination of the local and global elasto-plastic case will also 

differ. The combined SDOF model gives a rough estimation of the behaviour of the 

frame, but should not be trusted completely.  

 

4.8 Concluding remarks 

This study of the structural response of a 2D frame has brought some interesting 

results. For starters, the elastic local and global SDOF models agree well with the FE 

analysis. Thus, it can be stated that the methodology proposed in Johansson (2013) for 

the local and global elastic response is reliable. 

The local model is proposed to primarily represent the initial stage after the loading 

has occurred. Since the global model has a frequency about ten times smaller than the 

local model, it has not had any significant deformations at the time when the local 

model reaches its first peak. This means that at the initial stage, the top of the local 

column can be approximated to be simply supported by the frame, why the local 

model should be appropriate at the initial stage.  

The local and global elastic models give a behaviour that corresponds well with the 

FE analysis when combined. However, the FE analysis shows a decrease in 

deformation magnitude at certain intervals, a behaviour that has not been examined 

further since it is not considered to be critical.  
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The elasto-plastic case is more complicated than the elastic. The structural response 

model of the local frame model proved to be trilinear, even though the material model 

is bilinear. This is due to the fact that it can develop two plastic hinges, one at the 

fixed support and one in the span. The trilinear response model will, when the load is 

large enough, result in a higher first deformation peak.  

Since a trilinear response model is more complicated than a bilinear model, a 

comparison between the two cases was made. It showed that the obtained deformation 

is roughly the same for the two models, and a bilinear response model can be used for 

estimations of the deformation. However, since the bilinear model provides results on 

the unsafe side it is recommended to use the trilinear model when the obtained 

deformation from the bilinear model is close to reaching the deformation capacity. For 

cases with a low plastic deformation capacity, it is also suggested to be more careful 

when choosing the response model. 

The global elasto-plastic model was also proven to have a trilinear response model. 

However, this static response model did not fully represent the behaviour of the global 

frame since it showed some plastic deformations even though the response model did 

not indicate this. This response seems to be connected to the relationship between the 

local and global deformations and the corresponding shapes. However, the response 

of the elasto-plastic global model is not completely understood. Due to this fact, the 

combination of the local and global model does not correspond as well with the 

FE analysis as the elastic combination did.  
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5 Structural response of a 3D frame 

5.1 Introduction and method 

This chapter studies the structural response of a front column in a 3D frame structure 

subjected to a load applied on both the column itself and on the surrounding wall. The 

aim of the study is to evaluate the difference between when the total load is applied 

directly on the column, and when it is delayed in form of dynamic reaction from the 

adjacent wall. The effect of the dynamic reaction is expected to be less destructive 

than the direct application of the load as the magnitude of the reaction is much lower 

and its duration is prolonged in time. An evaluation of the simplifications used for 

applying the impulse load in the frame analysis, proposed in Johansson (2013), is also 

performed.  

A SDOF model, similar to the local model in the 2D frame study in Chapter 4, is 

created to simulate the response of the front column. Both elastic and elasto-plastic 

response models are introduced. The SDOF system is solved by the use of the 

software Matlab R2013a and the results are compared to the response obtained in FE 

analyses conducted in ADINA (2011).  

 

5.2 Geometry and properties 

The structure analysed in this study is presented in Figure 5.1. The roof beam with 

supporting columns stabilizes the walls and the roof. The columns are fully fixed to 

the ground. The wall is supported only on the columns and transfers the load only in 

the horizontal direction. The front column is considered to carry the load to the 

ground and through the roof beam to the back column while the wall only transfers 

the load to the column. The analysed section of the structure is marked in Figure 5.2. 
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Figure 5.1 3D-illustration of the structure.  
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Figure 5.2 The analysed section of the structure is marked as a hatched area. 

A top view of the considered section is schematically illustrated in Figure 5.3. It is 

assumed that the column is provided with longitudinal reinforcement, parallel to the 

length L, where As,c = 3ϕ20. The wall is provided with the reinforcement, where 

As,w = ϕ10 s 150 mm, parallel to the width of considered section w. Material properties 

are presented in Table 5.1. The study is performed with reinforcement of Class B as 

well as Class C in order to compare the deformation capacities. The dimensions are 

presented in Table 5.2. 

 

hw 

bw 

 As,w=10 s150 mm  As,w=10 s150 mm 

bw 

bc 

w 

   As,c=320      hc 

  

Figure 5.3 Top view of the analysed front column and wall with main dimensions 

and reinforcement amounts. 
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Table 5.1  Material properties of the frame. 

Part Ec 

[GPa] 

fcd 

[MPa] 

Es 

[GPa] 

fyd 

[MPa] 

Front column 33 25 200 500 

Front wall 33 25 200 500 

 

Table 5.2  Dimensions of the structure. 

Part bw / bc 

[m] 

hw / hc 

[m] 

w 

[m] 

s 

[m] 

B 

[m] 

L 

[m] 

Wall 3.0 0.2 6.0 6.0 15.0 7.0 

Column 0.5 0.6 - - 15.0 7.0 

 

5.3 Adaptation into SDOF system 

 SDOF model of the wall 5.3.1

The wall is simply supported on the columns and can therefore be described as a 

simply supported beam, Figure 5.4. 

 

(a) (b) 

EIc1,  

mc1+ mw1 

L 

w 

  EIw1, mw1 

P(t) 

R(t) 

P(t) 

 

Figure 5.4 SDOF model of the wall. 

The properties and dimensions of the wall are described in Section 5.2 and the load 

applied on it, P(t), is described in Section 5.4.1. The input data for the SDOF system 

for the wall panel of 1 m width is calculated in Section F.1.1 and presented in 

Table 5.3. The elasto-plastic response is simulated with a bilinear resistance-

deformation curve, R(u), where the inclination of the first branch k1.w corresponds the 

stiffness in state II. The resistance Rm.w corresponds to the ultimate resistance of the 

critical span section. When implementing the SDOF system for the elasto-plastic 

response, the plastic transformation factors are used. 
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Table 5.3  Mass, stiffness and transformation factors used for the elastic and 

elasto-plastic model for wall panel of 1 m width.  

Model κmF 

[-] 

mw 

[kg] 

Iw=III.w 

[10
-4

 m
4
] 

k1.w 

[kN/m] 

Mrd.w 

[kNm] 

Rm.w 

[kN] 

Elastic 0.788 2 880 0.54 640 - - 

Elasto-

plastic 
0.667 2 880 0.54 640 37.8 50 

 

 SDOF model of the front column 5.3.2

The front column of the frame structure is fixed at the ground. Similarly as the front 

column in the 2D analysis in Chapter 4, the top support can be approximated as 

simply supported at the initial stage of the analysis. The SDOF model of the front 

column is illustrated in Figure 5.5. The model is established in agreement with the 

method proposed by Johansson (2013). 
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mc.w=mc1+ mw1 
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Figure 5.5 SDOF model of the front column. The mass of the model is the total 

mass of the column and considered wall section. The stiffness only 

corresponds to the stiffness of the column. 

Since the wall contributes with its mass to the structure, the mass of this SDOF model 

is the total mass of the column and wall. However, since the wall is only transferring 

load between the columns it does not contribute to the stiffness of the column. 

Therefore, the stiffness of the SDOF model corresponds to the stiffness of the column. 

The structure is subjected to two load types, F’(t) and R(t), described in Section 5.4.  

The parameters of the column are established in the same manner as for the local front 

column described in Chapter 4. The calculations of these parameters can be found in 

Section F.1.2 and the values are presented in Table 5.4. The elasto-plastic response is 

simulated with a trilinear resistance-deformation curve, R(u), where the stiffness k1.c 

corresponds to the inclination of the first branch and k2.c to the inclination of the 

second branch. Only the stiffness in state II is considered. The resistance Rms.c 

corresponds to the ultimate resistance at the fixed support while Rmf.c to the ultimate 

resistance of the critical span section. When implementing the SDOF system for the 
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elasto-plastic response plastic transformation factors are used, as they provide 

satisfactory results, according to Andersson and Karlsson (2012). 

Table 5.4  Mass, stiffness, resistance and transformation factors used for the elastic 

and elasto-plastic response model of the front column. 

Model κmF 

[-] 

mc.w. 

[kg] 

Ic=III.c 

[10
-4

 m
4
] 

k1.c 

[kN/m] 

k2.c 

[kN/m] 

Mrd.c 

[kNm] 

Rms.c 

[kN] 

Rmf.c 

[kN] 

Elastic 0.805 25 200 11 20 967 - - - - 

Elasto-

plastic 
0.667 25 200 11 20 967 8 128 211 241 361 

 

5.4 Application of impulse load 

 Introduction 5.4.1

In this study the considered area, which is marked in Figure 5.6, is subjected to an 

impulse load with a magnitude of 60 kPa and duration of 0.025 s which is the same as 

in the 2D frame study. This load is referred to as External load in the following 

paragraphs. 

The response of the front column subjected to this load is studied. The paramters of 

the load are described in Figure 5.7 and Table 5.5. 

 Front wall 

EIw1, mw1 

L 

B 

w 

Front column 

EIc1, mc1 

1.0 m 

P(t) 

 

Figure 5.6 3D-illustration of how the External load, P(t), hits the structure. P(t) is 

applied on the marked area.  
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Table 5.5  Parameters for the chosen load. 

Ppeak 

[kN/m] 

tpeak 

[s] 

t1 

[s] 

60 0.00025 0.025 

 

 

  t [s]
 

P [kPa] 

Ppeak   

 tpeak  t1 

 

Figure 5.7 Properties of the chosen impulse load. 

There are two different ways of applying the External load on the front column. The 

simplified version is when the total load is directly applied on the column, which is 

further described in Section 5.4.2. The second version, where consideration is taken to 

the delay due to the dynamic reaction of the walls, is described in Section 5.4.3.  

 

 Direct application of load 5.4.2

The simplest way of applying the load on the column is to apply the total impulse load 

from the considered area, marked in Figure 5.8, directly on the column.  
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Figure 5.8 The total load from the marked area is applied on the front column at 

the same time.  
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The shape and duration of the load applied on the column will be the same as for the 

External load, P(t), described in Section 5.4.1. However, the magnitude of the load 

will be larger since the area of where the load is applied is larger than one meter. The 

total load, F’(t), applied directly on the front column is calculated according to 

equation (5.1) and is referred to as Direct load in this chapter. 

m

kN
tPwtF 360606)()('   (5.1) 

This calculation methodology, where the load is directly applied on the front column, 

is used in Johansson (2013). It is expected to provide conservative results since the 

load will have a higher magnitude than the load described in Section 5.4.3.   

 

     F’(t) 

 EIc1, 

 mc1 + mw1 

  

L 

 

Figure 5.9 Direct application of the total impulse load, F’(t), gathered from the 

marked area of the wall section. 

 

 Delayed application of load  5.4.3

5.4.3.1 Concept of delayed load 

The front column is considered to carry the impulse load to the ground and through 

the roof beam to the back column while the wall only transfers the load to the column. 

When the impulse load hits the wall, the load is transferred to the column in form of 

support reaction. The transfer path of the load applied on the wall as well as the load 

direction within the column is presented in Figure 5.10. 
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Figure 5.10 Path of the External load, P(t), transferred through the wall to the 

column. The load is further transmitted to the restraints of the 

column, at the ground and at the top.  

The dynamic reaction induced in the wall section by the External load P(t) is 

presented Figure 5.11a and the concept used in its estimation can be found in 

Section F.3. This dynamic reaction is loading the supporting column, according to 

Figure 5.11b. It is reasonable to expect that the effect on the structure of this dynamic 

reaction is less destructive than in case of the direct application of the load. The 

magnitude of the dynamic reaction is much lower and its duration is prolonged in 

time.  
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0.5R(t) 0.5R(t) 
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R(t) 
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L 

 

Figure 5.11 (a) The External load P(t) acting on the wall induces the dynamic 

reaction 0.5 R(t). (b) The dynamic reaction R(t), from the wall 

sections on both sides of column, becomes the load on the column.   

The dynamic reaction from the wall, R(t), is calculated by implementing the central 

difference method, see Appendix D. The wall is modelled as a simply supported 

beam. The reaction, R(t), is simulated for both an elastic and an elasto-plastic SDOF 

model of the wall. The development of the dynamic reaction and its correlation to the 

External load as well as the deformation and resistance is presented in Table 5.6. 
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It can be noticed that the maximum deformation of the wall is obtained at time tmax 

when the wall has absorbed the entire energy delivered by the External impulse load. 

The total impulse Ik, marked in Table 5.6a, multiplied by the area on which the 

impulse is acting corresponds to the marked area under the reaction-time curve in 

Table 5.6d. After the maximum deformation umax is reached, the structure starts to 

oscillate elastically as it has been provided with a surplus of energy. 

 

  



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 128 

Table 5.6  Elastic and elasto-plastic models for: (a) the External load; 

(b) deformations obtained in wall; (c) resistance-deformation 

relationship; (d) development of resistance in time i.e. delayed load.   

Elastic response Elasto-plastic response 

(a)  
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The reaction R(t) in Table 5.6d will oscillate as the wall sways back and forth and 

therefore there are several different ways of interpreting the load from the wall which 

is transferred to the column. The different loads used for the elastic and elasto-plastic 

cases are described in Section 5.4.3.2 and 5.4.3.3, respectively.  

 

5.4.3.2 Elastic reaction loads 

The support reaction for the elastic model is simulated in four different ways, 

illustrated in Figure 5.12 and described in Table 5.7.  
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Figure 5.12 The reaction loads used in the study of the structure simulated with 

the elastic response curve: (a) Reaction load ; (b) Reaction load 2; 

(c) Reaction load 3; (d) Reaction load 4. 
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Table 5.7 Description of the four different loads shown in Figure 5.12. Elastic 

model is used. 

Reaction load Description 

Reaction load 1 

Figure 5.12a 

This load operates until the time tmax when the External load, P(t), 

has been transmitted into the structure. This means that the Direct 

load, F’(t), and Reaction load 1 will contain the exact same 

impulse Ik and are therefore comparable with regard to impulse 

size. 

Reaction load 2 

Figure 5.12b 

Reaction load 2 is a continuation of Reaction load 1. For this 

load, the total impulse Ik is increased with an extra impulse ΔIel of 

the same magnitude as Ik. Thus, this reaction load is expected to 

result in larger deformation. 

Reaction load 3 

Figure 5.12c 

For Reaction load 3 an additional impulse ΔIel, but with a 

negative sign, is added. The positive and negative additional 

impulse ΔIel cancel out each other. Thus the total impulse 

transmitted into the structure corresponds to the impulse Ik, which 

is the same as for Reaction load 1. 

Reaction load 4 

Figure 5.12d 

Reaction load 4 is based on that the wall sways back and forth, 

creating an infinite oscillating reaction force. This is the most 

realistic interpretation of the load, except for the natural damping 

which would occur in reality. For Reaction load 4 the positive 

and negative additional impulse ΔIel continues to cancel each 

other. 

 

5.4.3.3 Elasto-plastic reaction loads 

Two different reaction loads, illustrated in Figure 5.13 and described in Table 5.8, are 

investigated for the elasto-plastic case.  
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Figure 5.13 The reaction loads used in the study of the structure simulated with 

the elasto-plastic response curve: (a) Reaction load 5; (b) Reaction 

load 6. 
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Table 5.8 Description of the loads shown in Figure 5.13. Elasto-plastic model is 

used. 

Reaction load Description 

Reaction load 5 

Figure 5.13a 

The concept of this load corresponds to Reaction load 1 for the 

elastic case. The load operates until the External load, P(t), has 

been transmitted into the structure. The size of the impulse, Ik., is 

identical to the Direct load  

Reaction load 6 

Figure 5.13b 

Reaction load 6 has the same concept as Reaction load 2 for the 

elastic case. Reaction load 5 is increased with an additional 

positive impulse ΔIep. Since the impulse is larger than for 

Reaction load 5, the effect and resulting deformation is predicted 

to be larger. 

 

5.5 Modelling in ADINA 

 Introduction 5.5.1

The response of the considered structure is also studied with a FE analysis, where two 

different models are simulated in ADINA. The 2D model, further described in 

Section 5.5.2 corresponds to the SDOF model. The 3D model, described in 

Section 5.5.3, is created with both the wall and column in order to reassemble the real 

situation. Input files for the 3D model for elasto-plastic response can be found 

Section H.2. 

 

 2D model 5.5.2

The 2D model describes the front column. The boundary conditions, geometry and 

properties are identical to the SDOF model described in Section 5.3.2.  

The method of modelling is the same as for the local response of the 2D frame 

structure, described in Section 4.5. 2D beam elements with three integration points 

across the height of the cross sections are used. The value of the equivalent Young’s 

modulus EII is calculated as 

GPa16433
1009

1011
3

3

.
.

.
E

I

I
E I

a.c.I

c.II
II 










 (5.2) 

where III.c is the moment of inertia for the cracked section found in Table 5.4 and II.c.a 

is the moment of inertia for the uncracked section. The calculation of these parameters 

can be found in Section F.1.2. EI is Young’s modulus in state I from Table 5.1. The 

fictional yield limit fyd is established as 

MPa 037
66050

10211
2

3

.
/)..(W

M
f
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
  (5.3) 
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where Mrd.c is the moment capacity of the section which can be found in Table 5.4 and 

Wel.c is the elastic bending resistance. 

The 2D model is used to confirm the correctness of the SDOF calculations. The 

comparison of the results from these two methods is presented in Section F.4. 

 

 3D model 5.5.3

The 3D model is created to better simulate the real behaviour of the analysed structure 

consisting of the wall, on where the load is applied, and the column. The real 

behaviour of the structure means that ADINA considers the speed of propagation of 

the impulse within the structure and the fact that it takes a certain time before the 

impulse applied on the wall has reached the column. Furthermore, the interaction of 

the wall’s and column’s dynamic response is included. 

Both the column and the wall are modelled with their real dimensions and properties 

according to Section 5.2. The transfer of the load within the structure occurs in two 

directions while the deformation occurs in the third. Therefore it is not possible to 

describe the response by mean of a two dimensional space and a third direction must 

be introduced. The model implemented in ADINA is schematically presented in 

Figure 5.14. The column is modelled with mass mc1, stiffness EIc1 while the wall is 

provided with mass mw1 and stiffness EIw1. The calculations of these parameters can 

be found in Section F.1. The External load P(t) is applied only on the wall. The 

column is therefore subjected only to the support reaction, R(t), induced by External 

load P(t), transferred from the wall through the wall supports. 
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Figure 5.14 Schematic illustration of the 3D model implemented in ADINA. In the 

true model there are seven wall panels on each side of the column.  

The response obtained in ADINA is assumed to simulate the real behaviour of the 

structure. However, the wall in this 3D FE model consists of 7 wall panels, resulting 

in seven point loads on the column instead of a uniformly distributed load. This means 

that the 3D FE model is an approximation of the reality, but it is assumed to 

reassemble the true behaviour of the structure more closely than the SDOF model and 

the 2D FE model.  
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For 3D beam elements, the Equivalent Young’s modulus can be calculated in the 

same way as in the 2D analysis. For the wall and column, respectively, the equivalent 

Young’s modulus is calculated as 

GPa 70233
10640

10540
3

3

.
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.
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w.II
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 (5.4) 
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 (5.5) 

where III.w, III.c, II.w.a and II.c.a  are calculated in Section F.1. The values of Young’s 

modulus in state I EI can be found in Table 5.1. 

When using 3D beam elements ADINA sets the number of integration points across 

the height of the section to 7 and it is not possible to choose any other option. 

According to Augustsson and Härenstam (2010) and Ek and Matsson (2009) the 

expected stress distribution for 7 integration point should be as in Figure 5.15b which 

differs from the theoretical distribution for a fully plasticised section, Figure 5.15a. 

Moreover, the yield stress obtained in ADINA, Figure 5.15c, has been proven to not 

agree with the expected stress distribution in Figure 5.15b. Therefore the input value 

of the yield stress must be modified. 

The bending resistance for the fully plasticised section, Figure 5.15a, and for the 

section with stress distribution corresponding to the expected distribution in ADINA, 

Figure 5.15b, is calculated as  

2

4

1
bhWpl   (5.6) 

2

54

13
bh´W pl  (5.7) 

where b is the width of the section and h is the height. 

It can be noticed that Wpl is about 4 % larger than W´pl. Moreover, Ek and 

Matsson (2009) have shown that in order to obtain the assumed value of the stress 

distribution as in Figure 5.15b, the input yield strength should be increased with 

4.3 %. Therefore, when using the theoretical stress distribution, Figure 5.15a, the 

input yield strength should be increased with 8.3 %. 

ydmod.yd f.f 0831  (5.8) 

where 

pl

rd

yd
W

M
f   (5.9) 

Thus, the modified yield stress for the wall and column, respectively, to be used in 

ADINA in order to get the correct response is calculated as 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 134 

MPa104
201

41038
08310831

2

3

.
.

.
W

M
.f

w.pl

w.rd
w.mod.yd 




  (5.10) 

MPa07.5
6.05.0

410211
083.1083.1

2

3

.

.

.mod. 





cpl

crd
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where Mrd.w  and Mrd.c. is calculated in Section F.1.1 and F.1.2, respectively. 

 

fyd fyd 

(c) (b) 

fyd 

fyd 

(a) 

fyd fyd 

 

Figure 5.15. (a) Stress distribution for a fully plasticised section. (b) Assumed stress 

distribution for 7 integration points. (c) Stress distribution in ADINA for 

3D beam elements according to Augustsson and Härenstam (2010). 

The simply supported connection of the wall to the column is modelled with rigid 

links which is shortly described in Section 4.5.  

 

5.6 Results and comparison 

 Elastic model 5.6.1

5.6.1.1 Deformation obtained in SDOF and 3D FE analysis 

In the SDOF model, presented in Figure 5.16a, the deformation of the column is 

obtained for the Direct load and for the reaction loads simulating the delayed loading. 

Comparison of these loads is done in Figure 5.17. The deformation, u(t), is measured 

in the middle of the column. In the 3D FE analysis the delayed load corresponds to the 

reactions at the supports of the wall. The reactions from the wall are induced by the 

External load P(t) acting only on the wall.  
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 u(t) 

 P(t) 

(b) (a) 

 ε 

 σ 

 

 Figure 5.16  Illustration of: (a) the SDOF model of the front column and its 

deformation u(t); (b) the elastic material response model.  

 

Figure 5.17 Load types used in the SDOF analysis of the structure simulated with 

the elastic response model. The loads are the sum of the load from the 

total considered area.  

In Figure 5.17 the area under the Direct load curve, i.e. the impulse I, is the same as 

the area under the curve for Reaction load 1. The sizes of the impulses for the 

different loads are shown in Table 5.9 where positive and negative impulses are 

considered to cancel out each other.  
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Table 5.9  Total impulse transmitted to the structure for different loads. 

Load type I=∫F(t)dt 

[kNs] 

Direct load 32.5 

Reaction load 1 32.5 

Reaction load 2 65 

Reaction load 3 32.5 

Reaction load 4 0 - 65 

 

The deformation obtained from the 3D FE analysis due to External load P(t) and the 

deformation due to the Direct load applied on the SDOF model are presented in 

Figure 5.18. 

 

Figure 5.18 Comparison of deformation in the middle of the column obtained in 

the 3D FE analysis due to External load P(t) and in the SDOF 

analysis for the Direct load.  

It can be noticed that the deformation of the column obtained in the SDOF analysis is 

almost twice as large as in case of the deformation from the 3D FE analysis. This 

shows that the simplified method of the frame structure provides results considerably 

on the safe side.  

An FE analysis is also done where only the first bending mode is considered, which 

corresponds to the SDOF model. An FE analysis with only the first bending mode of 

the structure allows deformation of the column whereas the wall remains undeformed. 
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The results delivered from this FE analysis agrees well with the deformation obtained 

in the SDOF calculations, see Figure 5.19.  

 

Figure 5.19 Comparison of the deformation in the middle of the column obtained 

in the 3D FE analysis due to External load P(t) for the first bending 

mode and in the SDOF calculation for the Direct load.  

In addition to verifying the simplified SDOF method, which has shown to provide 

conservative results, a comparison of the deformation in the 3D FE analysis to the 

deformation obtained in SDOF for the delayed loading is also done. The reaction 

loads, presented in Figure 5.17 for the whole considered wall area, are created in order 

to simulate the true loading of the column, i.e. the reactions at the wall supports 

induced by the impulse load. The deformations obtained in SDOF for the studied 

reaction loads are compared to the results from the 3D FE analysis in Figure 5.20 and 

Figure 5.21. 
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Figure 5.20 Comparison of the deformation in the middle of the column obtained 

in the 3D FE analysis due to External load P(t) and in the SDOF for 

Reaction load 1 and Reaction load 2. 

 

Figure 5.21 Comparison of deformation in the middle of the column obtained in 

the 3D FE analysis due to External load P(t) and in the SDOF for 

Reaction load 3 and Reaction load 4.  

A summary of the maximum deformations obtained in SDOF and in the FE model can 

be found in Table 5.10. For each type of load, the SDOF analysis provides results on 

the safe side. 
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Table 5.10  Maximum deformation in the middle of column obtained in the FE 

analysis and SDOF calculations. 

Load type SDOF 

umax 

[m] 

FE 3D 

umax 

[m] 

Direct load 0.047 

0.027 

Reaction load 1 0.038 

Reaction load 2 0.047 

Reaction load 3 0.062 

Reaction load 4 0.062 

 

The SDOF deformations are further discussed in Section 5.6.1.2 and the reasons for 

the shape of the deformation curve from the 3D FE analysis are discussed in 

Section 5.6.1.3.  

 

5.6.1.2 Discussion of the SDOF deformation 

When comparing the loads used for the study of the structure, which are presented in 

Figure 5.17, the difference in time at which their maximum value is reached is 

obvious. The Direct load reaches its peak value instantaneously at tpeak equal to 0 ms, 

while the reaction loads at tpeak around 100 ms. 

The deformation due to the Direct load, Reaction load 1 and Reaction load 2 are 

shown in Figure 5.22. 
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Figure 5.22 Deformation in the middle of the column obtained from the SDOF 

calculations for Direct load, Reaction load 1 and Reaction load 2. 

A comparison of the loads and deformation for the Direct load and Reaction load 1 is 

shown in Figure 5.23. The Direct load and Reaction load 1 contains the same impulse, 

see Table 5.7. However, the duration of the Direct load is seven times shorter than the 

duration of Reaction load 1 while its magnitude is around four times larger. The fact 

that Reaction load 1 is prolonged in time enables the structure to develop a resistance 

against the energy transferred when the impulse hits the structure. Thus, the external 

work done by the Direct load is larger than the external work done by Reaction load 1. 

When comparing the internal work for these two cases of loading, the deformation is 

larger for the Direct load as the area under resistance-deformation curve for this load 

is also larger than for Reaction load 1, see Figure 5.24. 
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Figure 5.23 Comparison of the deformation in the middle of the column due to the 

Direct load and Reaction load 1. 
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Figure 5.24 Comparison of internal work and resulting deformation for the 

structure subjected to the Direct load and Reaction load 1. 

For Reaction load 1 all deformation peaks reaches the same magnitude, which can be 

seen in Figure 5.22. In this case, the load has stopped before the deformation has 

reached its maximum value, see Figure 5.25.  

Reaction load 2 is a continuation of Reaction load 1. Both the duration and the total 

impulse for Reaction load 2 are twice as large as for Reaction load 1. Thus, the 

resulting deformation from Reaction load 2 is expected to be also larger. However, the 

difference in deformation for the two loads is only 0.004 m, see Figure 5.25. The 

external work done by Reaction load 2 is not significantly larger than for Reaction 

load 1. The fact that the load is prolonged in time gives the structure time to develop 

resistance against the kinetic energy transferred when the load hits the structure.  
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Figure 5.25 Comparison of the deformations in the middle of the column due to 

Reaction load 1 and Reaction load 2.  

The first peak of the deformation caused by Reaction load 2 is higher than the 

following peaks, see Figure 5.22. This is a result of the prolonged duration of this 

load. At the time when the first peak occurs, the load is still acting, pushing the 

deformation to a higher value. This can be seen in Figure 5.26 where the development 

of the deformation due to the Direct load and Reaction load 2 is compared. 

 

Figure 5.26 Comparison of the deformations in the middle of the column due to 

the Direct load and Reaction load 2. 

The deformation induced by Reaction load 3 is larger than for the Direct load, see 

Figure 5.27. Moreover, the common assumption that the initial response is the most 

critical for dynamically loaded structures does not agree here. 
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Figure 5.27 Deformation in the middle of the column due to the Direct load and 

Reaction load 3. 

For Reaction load 3 the additional negative impulse, –ΔIel, theoretically 

counterbalances the positive additional impulse, ΔIel, in order to get a total impulse Iel, 

see Table 5.7. However, in this case the frequency of the reaction load coincides with 

the frequency of the structure which thus enhances the effect of the load and pushes 

the negative deformation to a higher value, see Figure 5.28. 

 

Figure 5.28 Comparison of the deformation in the middle of the column and 

Reaction load 3.  

The deformation obtained due to Reaction load 4 is compared with the deformation 
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deformation due to Reaction load 4 is obtained after several sways. Moreover, this 

deformation is larger than the maximum deformation caused by the Direct load. 

These results does not agree with the common assumption for impulse loaded 

structures that the impulse load is the most destructive, nor that the most critical part 

is the initial response. However, since the structures in reality have a certain amount 

of damping the deformations decreases significantly with time. Therefore, the higher 

deformation obtained after several sways can be disregarded.   

 

Figure 5.29 Deformation in the middle of the column due to the Direct load and to 

Reaction load 4. 

Reaction load 4 and the resulting deformation are presented in Figure 5.30. The shape 

of the deformation curve is a result of how the development of deformations coincides 

with the frequency of the reaction load.  
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Figure 5.30 Deformation in the middle of the column due to Reaction load 4. 

The maximum deformations obtained for different loads are presented together with 

the theoretical size of the impulse load in Table 5.11. It can be seen that the most 

critical deformation obtained in the SDOF calculations is for Reaction load 3 and 4. 

However, since those deformations are obtained after several sways, they might still 

not be the most critical in reality due to the natural damping.  

 

Table 5.11  Maximum deformation and total impulse transmitted to the structure for 

different loads. 

Load type umax 

[m] 

I=∫F(t)dt 

[kNs] 

Direct load 0.047 32.5 

Reaction load 1 0.038 32.5 

Reaction load 2 0.047 65 

Reaction load 3 0.062 32.5 

Reaction load 4 0.062 0 - 65 

 

5.6.1.3 Structural response of wall panels in 3D FE analysis 

In order to better understand the behaviour of the 3D structure, the wall panels are 

investigated. The points where the deformation in the middle of the wall is measured 

are illustrated in Figure 5.31. 
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Figure 5.31 The different points along the column, for which the support reactions 

and the deformations in the middle of the wall, are measured.  

A comparison of the deformation obtained in the middle of the wall as well as in the 

middle of the column is presented in Figure 5.32. The deformations of the wall are 

also compared to the deformation of a simply supported beam with the same 

properties and dimensions as the wall panels. The best agreement of deformations for 

all points is at the beginning of the response i.e. within the first 0.3 seconds.  

The deformation that agrees best with the simply supported beam is the deformation 

for the point which is closest to the fixed support, i.e. point 1. This region of the 

column is characterised by the highest stiffness and lowest deformation of the column 

and therefore the support of the wall corresponds to a simple support. The largest 

deformations of the wall is obtained for the panels located in the middle of the column 

and panels closer to the simply supported edge of the column, i.e. point 4 and 5. The 

deformations in these points becomes delayed while their magnitudes increase.  

The deformation in the middle of the column is much smaller than in the middle of 

the wall. This is partly due to the difference in stiffness and boundary conditions of 

the wall and column as well as due to difference between the loads acting on column 

and wall. Since the 3D FE wall model is made of seven wall panels on each side of 

the column, the column is exposed to seven support reactions instead of one 

uniformly distributed load. Figure 5.33 shows those reactions acting on the column at 

the locations illustrated in Figure 5.31. 
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Figure 5.32 The deformations in the middle of the wall, measured in different 

points along the column, are compared to the deformation of a simply 

supported beam and to the deformation in the middle of the column. 

 

Figure 5.33 A comparison of deformation in the middle of the column and the 

support reactions acting on the column.  The reactions are the sum from 

the wall panels on both sides of the column.  
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In Figure 5.33 it can be seen that the reaction forces transferred from the wall to the 

column do not coincide. For a certain time interval the load case can be illustrated as 

in Figure 5.34. 
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Figure 5.34 The reactions transferred from the wall to the column have different 

frequencies and do not coincide. At a certain time interval both the 

magnitude and the direction of reactions vary.  

The behaviour of the reaction forces is partly a consequence of that the wall is 

modelled with a number of independent wall panels in ADINA. Their action 

corresponds to the action of the beam supported on springs. The stiffness of the 

springs is decided by the stiffness of the column, which varies along the length of the 

column, see Figure 5.35. Thus, for the different wall panels the supports are provided 

with different stiffnesses. For example, the stiffness of the wall panel next to the fixed 

edge of the column, k1, is larger than for the wall panel in the middle of column, k4. As 

a result the different wall panels have different frequency. 
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Figure 5.35 (a) The stiffness of the column supporting the wall panels differ for 

different regions. (b) The stiffness of the support of the wall panel is 

decided by the stiffness of the column at the corresponding location.  
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The fact that the reaction forces doesn´t coincide is a probable reason for the uneven 

development of deformation in the middle of the column. The counteraction of the 

reaction forces can be considered as a sort of damping.  

In order to understand the behaviour of the reaction forces better, point 1 and 4 in 

Figure 5.35 are investigated further. The reaction transferred from the wall panel to 

the column at those point during the first second is presented in Figure 5.36 and 

Figure 5.37. The reaction force is compared to the support reaction for a simply 

supported beam. The support reactions for all other points along the column can be 

found in Section F.5.1. 

Similarly as for the deformation the best agreement with the simply supported beam is 

for the wall panel with its support next to the fixed support of the column, i.e. point 1. 

For the wall supports towards the middle of the column, the reaction is delayed due to 

the decresed stiffnesses in this region. The supports in the middle of the column 

corresponds to a spring, since it is not fixed in the vertical direction.  

 

Figure 5.36 A comparison of reaction forces for a simply supported beam and the 

reaction transferred from the wall panel to the column at location 1.  
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Figure 5.37 A comparison of reaction forces from a simply supported beam and the 

reaction transferred from the wall panel to the column at location 4.  

In order to compare the delayed load in the 3D FE analysis with the delayed load from 

the SDOF analysis, the reactions from the wall panels are added according to 

equation (5.12) and plotted together with the delayed load from SDOF in Figure 5.38. 

 

Figure 5.38 A comparison of the delayed loading in SDOF and 3D FE analysis. 
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It can be noticed that Rtot(t) from the 3D FE analysis is decreasing with time. This is 

caused by the fact that the vibrations of the different wall panels do not coincide, 

which can be considered as a sort of damping. 

The magnitude of the total reaction calculated in SDOF is higher than in the 3D FE 

analysis, which agrees with the fact that the dynamic reaction is overestimated when it 

is calculated with regard to the assumption for the static load according to Andersson 

and Karlsson (2012). The concept of calculation the dynamic reaction can be found in 

Section F.3. The reactions obtained in the SDOF and 3D FE analysis, presented in 

Figure 5.38, agrees best at the very beginning of the response. The frequency is 

somewhat similar. However, the total reaction in the FE analysis becomes delayed 

since the supports of the wall panels in this FE analysis have different stiffnesses. 

However, the supports in the SDOF model of the wall are fixed in the vertical 

direction.  

The development of the total reaction acting on the column in the FE analysis in a 

longer time interval is plotted in Figure 5.39.§ 

 

Figure 5.39 Total reaction acting on the column in the 3D FE analysis. 

At around 2.5 seconds, when the total reaction reaches its lowest magnitude, the 

reactions at the stiffer regions of the column are working in another direction than the 

reactions in the regions with lower stiffness, see Figure 5.34. At around 4.5 seconds 

the highest magnitude of the total reaction is reached since the support reactions are 

working in the same direction. This effect makes the simulation of the response 

difficult to conduct in the SDOF system.  

 

 Elasto-plastic model 5.6.2

5.6.2.1 Deformation obtained in SDOF and FE 3D analysis 

The deformation of the column in the SDOF analysis is obtained for the Direct load 
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the delayed load corresponds to the reactions at the supports of the wall which are 

induced by the External load P(t) acting only on the wall. An illustration of all loads 

used for the study of the structure in SDOF analysis is shown in Figure 5.41.  

                                                            

 u(t) 

 P(t) 

(a) (b) 

 ε 

 σ 

 fyd 

 

 Figure 5.40  Illustration of: (a) the SDOF model of the front column and the 

deformation u (t); (b) the elasto-plastic material response model.  

 

Figure 5.41 Load types used in the analysis of the structure simulated with the 

elasto-plastic response curve. The loads are the sum of the load from the 

total considered area.  

When studying Figure 5.41, it can be noticed that the duration of the Direct load is 

shorter than the duration of the reaction loads, while its magnitude is around 

seven times larger. Reaction load 5 contains the same impulse as the Direct load, see 

Table 5.8. The area under the Direct load curve, i.e. the impulse I, is the same as the 

area under the curve for Reaction load 5. The sizes of the impulses for the different 

loads are shown in Table 5.12. 
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Table 5.12  Total impulse transmitted to the structure for different loads. 

Load type I=∫F(t)dt 

[kNs] 

Direct load 32.5 

Reaction load 5 32.5 

Reaction load 6 51.6 

 

The deformation obtained from the 3D FE analysis due to External load P(t) and the 

deformation for the Direct load and the reaction loads applied on the SDOF model are 

presented in Figure 5.42. 

 

Figure 5.42 Comparison of deformation in the middle of the column obtained in 

the 3D FE analysis due to External load P(t) and in the SDOF for the 

Direct load and reaction loads. 

The maximum magnitude of the deformation in the 3D FE analysis is 0.02 m, while it 

is almost 0.09 m in the SDOF for the Direct load. Thus, it can be stated that the 

method proposed by Johansson (2013) provides conservative results which are very 

much on the safe side.  

The reaction loads implemented in SDOF provide smaller deformation than the Direct 

load, i.e. the results for the delayed loads are still on the safe side. The elasto-plastic 

reaction models are further discussed in Section 5.6.2.2. The probable reasons for the 

behaviour of the column in the 3D FE analysis is explained in Section 5.6.2.3. A 

comparison of maximum deformations in Figure 5.42 is presented in Table 5.13. 
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Table 5.13  Maximum deformation obtained in SDOF and FE analysis. 

Load type SDOF umax 

[m] 

FE umax 

[m] 

Direct load 0.088 

0.020 Reaction load 5 0.051 

Reaction load 6 0.077 

 

5.6.2.2 Discussion of SDOF deformation 

An illustration of all loads used for the study of the structure, simulated with the 

elasto-plastic response curve in SDOF, is shown in Figure 5.41. The deformation due 

to these loads are shown in Figure 5.43. 

 

Figure 5.43 Deformation in the middle of the column for the Direct load, Reaction 

load 5 and Reaction load 6.  

Reaction load 5 is prolonged in time compared to the Direct load, see Figure 5.41, 

which enables the structure to develop a resistance against the energy transferred 

when the impulse load hits the structure. This resistance increases with time and 

depends on the stiffness of the structure. Thus, the external work done by the Direct 

load is larger than the work done by Reaction load 5. When comparing this to the 

position on the resistance-deformation curve in Figure 5.44, the deformation is larger 

for the Direct load than for Reaction load 5 as the area under this curve, 

corresponding to internal work, is also larger. 
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Wi.Reaction load 5  

 uReaction load 5 
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Figure 5.44 Comparison of internal work and resulting deformation for the 

structure with elasto-plastic response subjected to the Direct load and 

to Reaction load 5. 

Reaction load 6 is a continuation of Reaction load 5 and since it is prolonged in time, 

see Figure 5.41, the impulse is almost twice as large as in case of Reaction load 5. 

Therefore, the internal work done by the structure subjected to Reaction load 6 and 

the resulting deformation is larger compared to Reaction load 5. 

The maximum deformations as well as the total impulse transmitted by the studied 

loads are compiled in Table 5.14. 

 

Table 5.14  Maximum deformation and total impulse transmitted to the structure for 

the different loads. 

Load type umax 

[m] 

I=∫F(t)dt 

[kNs] 

Direct load 0.088 32.5 

Reaction load 5 0.051 32.5 

Reaction load 6 0.077 51.6 

 

5.6.2.3 Structural response of wall panels in 3D FE analysis 

The deformation obtained in the 3D FE analysis in the middle of the wall is 

investigated at the points illustrated in Figure 5.45.  
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Figure 5.45 The deformations and reaction forces are measured at different points 

along the column. 

A comparison of the deformations obtained in the middle of the wall in the different 

points as well as the deformation in the middle of the column are presented in 

Figure 5.46. The deformation in the middle of the wall is also compared to the 

deformation of a simply supported beam with the same properties and dimensions. In 

this figure, it can be noticed that at the beginning of the loading, within the first 

0.2 seconds, the deformation for the wall panels which are near the supports of the 

column i.e. in point 1, 2 and 7 are similar to the deformation of the simply supported 

beam. Similarly as for the elastic model, the deformation for the wall panel closest to 

the fixed support of the column is most similar to the deformation of the simply 

supported beam since the column is stiffest there. The largest deformation of the wall 

is obtained for the panels in the middle of the column i.e. in point 4 and 5. Similarly 

as for the elastic response, the difference in the frequency and magnitude of the 

deformation is a result of different stiffnesses of the column in its different regions. 

A comparison of the deformation in the middle of the column and the reaction forces 

from the different wall supports along the column is done and presented in 

Figure 5.47. It can be noticed that the reactions do not coincide but works against each 

other, as they did for the elastic model. This effect, caused by the different frequencies 

of the wall panels, decreases the deformation of the column. 
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Figure 5.46 The deformation in the middle of the wall, measured in different 

points along the column, are compared to the deformation of a simply 

supported beam and to the deformation in the middle of the column.  

 

Figure 5.47 A comparison of the deformation in the middle of the column and the 

support reactions acting on the column.  The reactions are the sum from 

the wall panels on both sides of the column. 

The elasto-plastic reactions from the wall supports reach the maximum value at the 

beginning of the response and decreases after the first 0.7 seconds. The counteraction 
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Figure 5.50, respectively. Figure 5.49 shows the reactions of point 1 for a longer time 

interval. The support reactions for all other points along the column can be found in 

Section F.5.2.  

As for the elastic case the largest similarity to the simply supported beam is for the 

wall panel with its support next to the fixed support of the column, i.e. point 1, 

Figure 5.48. For the wall panels with supports towards the middle of the column, the 

reaction is delayed due to the stiffness of this region which differs more than in case 

of a simple support, Figure 5.50. 

In Figure 5.49 the magnitude of the support reaction decreases from 36 kN to 15 kN. 

This behaviour can be compared to damping, which agrees with the general 

consideration of the elasto-plastic response as a source of damping. After 0.7 seconds 

the reaction continues with the same amplitude of oscillations and the same maximum 

deformation. 

 

Figure 5.48 A comparison of the reactions for a simply supported beam and the 

reactions transferred from the wall panel to the column at point 1.  
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Figure 5.49 The reaction transferred from the wall panel to the column at point 1 for 

the first 6 seconds.   

 

Figure 5.50 A comparison of the reactions for a simply supported beam and the 

reactions transferred from the wall panel to the column at point 4.  

A comparison between the delayed loads obtained in the 3D FE analysis, which is 

calculated as the sum of all support reactions according to equation (5.12), to the 

assumed delayed load established in SDOF is presented in Figure 5.51. 
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Figure 5.51 A comparison of the total delayed load in SDOF and in the 3D FE 

analysis. 

The total reaction in SDOF is overestimated when it is calculated with regard to the 

assumption for the static load. This concept of calculation of the dynamic reaction can 

be found in Section F.3. According to Andersson and Karlsson (2012) the correct 

value of the dynamic reaction for a simply supported beam is not 0.5Rm but 0.39Rm.  

The total reaction in the FE analysis Rtot, equation (5.12), becomes delayed and 

decreases due to different frequencies of the wall panels. Its development for a longer 

time interval is presented in Figure 5.52.  

 

Figure 5.52 Total reaction acting on the column in the 3D FE analysis. 
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The shape of the total reaction in Figure 5.52 is caused by the difference in frequency 

of the support reactions from wall, similarly as for the elastic response. At the time 

2.5 s, when the total reaction reaches the lowest magnitude, the reactions at the 

regions with the highest and lowest stiffness are working against each other. After this 

the frequency of the support reactions starts to coincide more. At the time of around 

4.5 s all reactions are working in the same direction and the total reaction Rtot reaches 

higher value. 

 

5.6.2.4 Check of deformation capacity 

The check of the plastic deformation capacity of the front column is presented in this 

section. The studied here SDOF model of the front column is similar to the model of 

the front column in the 2D frame analysis performed in Chapter 4. The concept of 

calculating the deformation capacity for a structure with a trilinear response model is 

described in Section 4.7.1.4. The calculations are presented in Section F.2 and the 

results in Table 5.15.  

 

Table 5.15 Comparison of plastic deformation capacity and maximum deformation 

obtained for the different loads.   

Reinf. 

Class 
 

 

urds 

[m] 

SDOF 3D FE 

Direct load 

umax 

[m] 

Reaction load 5 

umax 

[m] 

Reaction load 6 

umax 

[m] 

 

umax 

[m] 

B 0.040 0.088 0.051 0.077 0.020 

C 0.102 0.088 0.051 0.077 0.020 

 

This check shows that for the Direct load, the deformation capacity is sufficient for 

reinforcement of Class C, but not for reinforcement of Class B. The maximum 

deformation due to Reaction load 5 and 6 is lower than due to the Direct load, but the 

deformation capacity is still not sufficient when reinforcement of Class B is used.  

Since all SDOF calculations has been proven to be on the safe side, and the maximum 

deformation obtained in the 3D FE analysis is 0.020 m the structure would not 

collapse for the considered load, for both reinforcement of Class B and Class C.  

 

 Comparison of elastic and elasto-plastic model 5.6.3

When comparing the deformation in the middle of the column for the elastic and 

elasto-plastic response, a difference in magnitude is obvious while the frequency is 

similar, see Figure 5.53. 
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Figure 5.53 The deformation in the middle of the column for the elastic and 

elasto-plastic response. 

The fact that the deformation for the elasto-plastic response is smaller is a result of a 

lower reaction load induced at the supports of the wall panels which are simulated 

with an elasto-plastic response curve. For both response models the frequency of 

deformation and the support reactions are the same. The support reactions of wall 

panel 1 for two models are compared in Figure 5.54. 

 

Figure 5.54 The support reaction for the wall panel at point 1, i.e. next to the 

fixed support of column, for the elastic and elasto-plastic response. 
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For the studied structure the elastic reactions are larger than the elasto-plastic. The 

maximum value for the elastic response is 52 kN while for the elasto-plastic response 

it is 35 kN. In this study the simulation of the response of the structure with the elastic 

model results in higher load acting on the column and thus in higher deformation. In 

general, however, a larger deformation is more often obtained when implementing the 

elasto-plastic response. The difference in magnitudes of deformation between the 

elastic and elasto-plastic model depends on the chosen parameters of the structure. 

Thus, further investigation of the influence of different parameters on the response of 

the studied frame is done and presented in Section 5.6. 

 

5.7 Parametric study 

 Orientation 5.7.1

The results obtained in Section 5.6 are in this section compared to structures where 

the stiffness and internal resistance of the wall is varied for the elastic and elasto-

plastic model, respectively. The other properties of the wall and column are the same 

as in the previous study, see Section 5.2.   

This parametric study is conducted in the same manner as the previous analysis in 

Section 5.6. The Direct load and the dynamic reaction from the supports of the wall 

are simulated and applied on the column in the SDOF system. The results are verified 

with a 2D FE analysis, and a 3D FE analysis of the structure is performed in 

ADINA (2011).  

In this section a selection of the results is presented and discussed. The other results 

such as the verification of the SDOF model with 2D FE analysis, a comparison of 

wall support reactions with a simply supported beam as well as a comparison of the 

delayed loading in SDOF and in the 3D FE analysis can be found in Appendix G. 

 

 Elastic model 5.7.2

5.7.2.1 Parameters studied 

For the elastic model only the stiffness of the wall is varied. Three different cases are 

considered here, see Figure 5.55. The first case is an unchanged stiffness ku which is 

the same as in the previous study, see Table 5.3 and equation (F.6). The second case is 

stiffness kd which corresponds to the stiffness used in the previous study decreased 

with factor 4. The last stiffness, ki, is increased with factor 4 compared to ku. The 

frequency for the studied cases differs with factor 2, according to Figure 5.55. Studied 

values of stiffnesses are complied in Table 5.16. 
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u 

 R 

 ku, fu 

 kd = ku/4, fd = fu/2 

 

Figure 5.55 Three different stiffnesses of the wall used in the elastic response 

model.  

 

Table 5.16 The values of stiffnesses for which the study is conducted.  

Stiffness Decreased 

kd  

[kN/m] 

Unchanged 

ku 

 [kN/m] 

Increased 

ki  

[kN/m] 

Wall 160 640 2560 

Column 20967 

 

5.7.2.2 Loads and deformation 

The studied column simulated in SDOF is subjected to the Direct load, Reaction 

load 1, 2 and 3. 

Reaction load 1 for the different values of the stiffnesses together with the Direct load 

is presented in Figure 5.56. 
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Figure 5.56 Reaction load 1 obtained in SDOF for different values of stiffnesses of 

the wall together with the Direct load.  

The resulting deformation in the middle of the column for each case of stiffness due to 

Reaction load 1 is compared with the deformation obtained for the Direct load in 

Figure 5.57.  

 

 

Figure 5.57 Comparison of deformation in the middle of column obtained in 

SDOF for different cases of Reaction load 1 together with the Direct 

load. 
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In Figure 5.57 the largest deformation is obtained for the structure subjected to the 

Direct load. Morover when comparing those results with Figure 5.56, it can be 

noticed that an increase in stiffness leads to a higher magnitude and a shorter duration 

of reaction load making it more similar to the impulse load. Thus, the deformation 

induced by Reaction load 1 increases with increasing stiffness of the wall.  

Reaction load 2 for different values of wall stiffness is shown in Figure 5.58 together 

with the Direct load.  

 

Figure 5.58 Reaction load 2 obtained in SDOF for different values of stiffnesses of 

the wall together with the Direct load. 

The deformation due to the different loads from Reaction load 2 is compared to the 

deformation caused by the Direct load in Figure 5.59.  
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Figure 5.59 Comparison of deformation in the middle of column obtained in 

SDOF for different cases of Reaction load 2 together with the Direct 

load. 

Similarly as for Reaction load 1, the largest deformation is obtained for the wall with 

the highest stiffness. Moreover, this deformation is larger than the deformation 

induced by the Direct load. As mentioned in Section 5.6, this effect is caused by the 

fact that Reaction load 2 is prolonged in time and increases the deformation to a 

higher value, see Figure 5.60. 

 

Figure 5.60 Comparison of the deformation in the middle of column and loads for 

the Direct load and Reaction load 2 for a case with the increased 

stiffness ki. All results are obtained in SDOF. 
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For the wall with decreased stiffness the deformation is compared to causing it Direct 

load and Reaction load 2 in Figure 5.61. The elongated shape of deformation is 

caused by the prolonged Reaction load 2 which is still active after reaching the 

highest deformation and sustains the positive deformation.  

 

Figure 5.61 Comparison of the deformation in the middle of the column and loads 

for the Direct load and Reaction load 2 for a case with decreased 

stiffness kd. All results are obtained in SDOF. 

Reaction load 3 for different stiffnesses of the wall is illustrated in Figure 5.62 

together with the Direct load. The resulting deformation for those loads is presented in 

Figure 5.63. 
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Figure 5.62 Reaction load 3 obtained in SDOF for the different values of stiffness 

of the wall together with the Direct load. 

 

Figure 5.63 Comparison of deformation in the middle of column obtained in 

SDOF for different cases of Reaction load 3 together with the Direct 

load. 
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In order to assess the simplified method recommended by Johansson (2013), the 

deformation due to the Direct load obtained in the SDOF system  is compared to the 

deformation in the 3D FE analysis. Figure 5.64 presents this comparison for different 

stiffnesses of the wall introduced in the FE model. 

 

Figure 5.64 Comparison of deformation in the middle of the column obtained in 

the 3D FE analysis for varied stiffness of the wall to the deformation 

obtained in SDOF, caused by the Direct load. 

The simplified method, i.e. the Direct load, provides results on the safe side for all 

three stiffnesses of the wall. The maximum deformations obtained for the Direct load 

in SDOF and for the different stiffnesses in the 3D FE analysis is presented in 

Table 5.17. Increased stiffness of the wall in the FE analysis leads to increased 

deformation of the column.   

 

Table 5.17 Maximum deformation of the column obtained in SDOF for the Direct 

load is compared to the deformation from the 3D FE analysis for the 

different cases of stiffnesses of the wall. 
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5.7.2.1 Investigation of wall panels in FE model 

The support reactions and deformations for the wall panels are measured along the 

column in points illustrated in Figure 5.65. The deformation in the middle of the 

column is plotted against the support reactions for point 1 and 4 for the decreased and 

increased stiffness of the wall in Figure 5.66 and Figure 5.67, respectively. The 

support reactions in all points along the column compared to the support reactions 

from a simply supported beam are shown in Section G.4.  
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Figure 5.65 The different points along the column, for which the support reactions 

and the deformations, in the middle of the wall, are measured. 

 

Figure 5.66 Comparison of the deformation in the middle of the column and the 

support reactions from wall panels at point 1 and 4 for the case with 

decreased stiffness of the wall.  
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Figure 5.67 Comparison of the deformation in the middle of the column and the 

support reactions from wall panels at point 1 and 4 for the case with 

increased stiffness of the wall. 

Comparing Figure 5.66 and Figure 5.67 it is obvious that the amplitude of sways in 

the deformation curve of the column is strongly influenced by the magnitude of the 

support reactions which is larger for the wall with increased stiffness.  

The deformations in the middle of wall for point 1 and 4, for the decreased and 

increased stiffness of wall, is also measures and presented in Figure 5.68 and 

Figure 5.69. 
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Figure 5.68 The deformation in the middle of the wall with decreased stiffness kd, 

measured for point 1 and 4 compared to the deformation of a simply 

supported beam.  

 

Figure 5.69 The deformation in the middle of the wall with increased stiffness ki, 

measured for point 1 and 4 are compared to the deformation of a 

simply supported beam.  

It can be noticed that for the wall with decreased stiffness the frequency of the support 

reactions and deformation in the middle of the wall in the studied points along the 

column are relatively similar to each other, compare Figure 5.66 and Figure 5.68. 
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of the column varies along its length is not so important when dealing with a structure 

where the stiffness of the wall is considerably decreased.    

For the wall with increased stiffness, on the other hand, the fact that the stiffness of 

the column varies has a considerable influence on the reaction at the wall supports as 

well as on the deformation in the middle of the wall, compare Figure 5.67 and 

Figure 5.69. This indicates that the wall with increased stiffness can be compared to a 

beam supported on springs, which stiffness corresponds to the stiffness of the column 

in the points along its length. In summary, the stiffness of the column becomes an 

important parameter for a structure with a wall panel provided with higher stiffness.  

 

5.7.2.2 Influence of stiffness 

For the elastic model, the stiffness of the wall has been varied according to 

Section 5.7.2.1. The column simulated in SDOF has been subjected to the Direct load, 

Reaction load 1, 2 and 3 according to Figure 5.56, Figure 5.58 and Figure 5.62, 

respectively. For each case of reaction load the resulting deformation of the column 

has been compared to the deformation caused by application of the Direct load, see 

Figure 5.57, Figure 5.59, Figure 5.60, Figure 5.61 and Figure 5.63. The deformation 

obtained from the Direct load in the SDOF calculations has been compared to the 

deformation obtained in the 3D FE analysis, Figure 5.64. The support reactions and 

deformation for wall panel 1 and 4 according to Figure 5.65, for the decreased and 

increased stiffness of the wall, have been also compared. 

A conclusion that can be drawn is that if the stiffness of the wall is decreased, the wall 

can be related to the behaviour of a simply supported beam. If the stiffness of the wall 

is increased, the response of the wall corresponds to the response of a beam supported 

on springs where the stiffness of the springs corresponds to the stiffness of the column 

in different regions along its length. This is illustrated in Figure 5.70.  

A structure with an infinitively stiff wall is briefly mentioned in Section 5.6.1.1, 

where the results from the analysis of the first bending mode of the 3D FE model are 

presented. The first bending mode only allows for deformation of the column, and 

hence, the wall stays undeformed. Thus, the behaviour of the wall corresponds to the 

behaviour of an infinitively stiff element. The deformation of the column in such case 

corresponds the deformation obtained when the column is subjected to the Direct 

load. This means that the load applied on the wall is instantaneously transferred from 

the wall to the column. The wall does not deflect but rather translates in the direction 

of the load application, i.e. the deformation for each point along every wall panel is 

the same.  
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(a) (b) 
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Figure 5.70 (a) When the stiffness of the wall is decreased, the behaviour of the 

structure becomes similar to the behaviour of a simply supported 

beam. (b) When the stiffness of the wall is increased, the response 

corresponds to the response of a beam supported on springs.  

In summary, different responses are obtained depending on the stiffness of the wall. 

Thus, the stiffness of the wall has proved to be an important parameter which 

considerably influences the response of the column. The Direct load application in 

SDOF is on the safe side compared to the 3D FE analysis for all stiffnesses of the 

wall.  

 

 Elasto-plastic model   5.7.3

5.7.3.1 Parameters studied 

For the elasto-plastic model, only the internal resistance of the wall is varied while the 

stiffness is unchanged and corresponds to the stiffness of the wall in the previous 

study, ku, see Table 5.3. The first internal resistance used in the parametric analysis is 

the unchanged resistance, Rm.u, which is the same as in the previous study. It is 

calculated according to equation (F.10) with the dimensions and properties as shown 

in Figure 5.3, Table 5.1 and Table 5.2. The other resistances used corresponds to the 

resistance from the previous study, Rm.u, decreased and increased with a factor 2, 

resulting in Rm.d and Rm.i, respectively. The studied cases for the elasto-plastic model 

are presented in Figure 5.71. In Table 5.18 the values of the internal resistance of the 

wall for which the study is conducted are presented. 
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Figure 5.71 Studied cases of the elasto-plastic response model adapted for the 

wall in a frame structure. Only the internal resistance is varied. The 

stiffness is the same for all cases.  

 

Table 5.18 The studied values of internal resistance of one wall panel. 

Internal resistance of wall 

panel 

Rm.d  

[kN] 

Rm.u  

[kN] 

Rm.i  

[kN] 

25 50 100 

 

5.7.3.2 Loads and deformation 

For the elasto-plastic model the column simulated in SDOF is subjected to the Direct 

load, Reaction load 5 and 6, according to Figure 5.41. 

Reaction load 5 obtained for the studied values of resistances is presented in 

Figure 5.72 together with the Direct load.  
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Figure 5.72 Reaction load 5 obtained in SDOF for different values of internal 

resistance of the wall together with the Direct load.  

For each case of Reaction load 5 the resulting deformation of the column is compared 

to the deformation caused by the application of the Direct load in Figure 5.73.  

 

Figure 5.73 Comparison of the deformation in the middle of the column obtained 

in SDOF for the different cases of Reaction load 5 in Figure 5.72 and 

the deformation caused by the Direct load. 

The largest deformation is obtained for the Direct load. For Reaction load 5, the 

simplified method for the analytical calculations of the deformation of the frame, 

proposed in Johansson (2013), provides results on the safe side. The magnitudes of 
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stiffness of the wall was varied, an increase in the internal resistance leads to an 

increase in deformation, which is explained in following paragraphs. 

 

Table 5.19 Maximum deformation of the column obtained for the Direct load and 

for Reaction load 5 in SDOF.  

 

Direct load Reaction load 5 

All cases of Rm Increased Rm, 

Rm.i 

Unchanged Rm, 

Rm.u 

Decreased Rm, 

Rm.d 

umax 

[m] 
0.088 0.061 0.050 0.018 

 

For Reaction load 5 the magnitude of the impulse I is the same for each case of 

internal resistance, see Figure 5.74. As the stiffness ku is also the same, the maximum 

value of resistance Ri reached for the case with increased resistance Rm.i is higher than 

for the case with decreased resistance Rm.u, compare Figure 5.74a to Figure 5.74b. 

Thus, the reaction acting on the column and the corresponding deformation of the 

column for a case with increased internal resistance is also higher.  
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Figure 5.74 The maximum value of reaction for Reaction load 5 in case of a wall 

with: (a) increased resistance; (b) decreased resistance.  

Moreover the duration of Reaction load 5 for a case with increased resistance, ti, is 

shorter than for the case with decreased resistance, tu. Thus, the effect of the support 

reaction for the case with increased resistance is more similar to the effect of the 

Direct load.  

Reaction load 6 for the considered magnitudes of internal resistance is presented in 

Figure 5.75. For the case when the wall has an increased resistance Rm.i, Reaction 

load 6 corresponds to the elastic model. The chosen impulse is not big enough for the 

resistance of wall to reach the limiting value Rm.i. Instead, after absorbing all energy 

transferred from the impulse, the reaction load starts to decrease before reaching Rm.i. 

This effect is further explained in following paragraphs. 
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Figure 5.75 Reaction load 6 obtained in SDOF for different values of internal 

resistance of the wall together with the Direct load.  

The deformation of the column caused by Reaction load 6 for the different cases of 

internal resistance are compared to the deformation caused by the direct application of 

the impulse load in Figure 5.76. The magnitudes are compiled in Table 5.20. 

 

 

Figure 5.76 Comparison of the deformations in the middle of column, obtained in 

SDOF for the different cases of Reaction load 6 together with the 

deformation caused by the Direct load. 
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Table 5.20 Maximum deformation of the column obtained for the Direct load and 

for Reaction load 6 in SDOF.  

 

Direct load Reaction load 6 

All cases of Rm Increased Rm, 

Rm.i 

Unchanged Rm, 

Rm.u 

Decreased Rm, 

Rm.d 

umax  

[m] 
0.088 0.170 0.077 0.018 

 

Here, it can be noticed that the case with increased resistance results in a larger 

deformation of the column than the Direct load. For this case of Reaction load 6 the 

position on the curves describing the development of the reaction in time is illustrated 

Figure 5.77. 
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Figure 5.77 Development of the support reaction of the wall with increased internal 

resistance, Rm.i, for Reaction load 6.  

As can be seen in Figure 5.77, the considered reaction does not reach the value of the 

resistance of the wall, Rm.i, as the chosen impulse magnitude for the Direct load Ik (see 

Table 5.8) is not large enough. In this case the response is completely elastic. Thus, 

the total impulse for this reaction load, Ii, is twice as large as for the Direct load, Ik.  

For the wall provided with internal resistance Rm.u the Reaction load 6 reaches the 

value of the internal resistance of the wall, see Figure 5.78.  
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 Rm.i = 2Rm.u 
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  Iu 

 

Figure 5.78 Development of the support reactions coming of the wall with internal 

resistance as in the previous study, Rm.u, for Reaction load 6. 
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The deformation obtained from the Direct load in SDOF is compared to the 

deformation obtained in the 3D FE analysis in Figure 5.79. The maximum 

deformation obtained for the different cases is presented in Table 5.21. 

 

Figure 5.79 Comparison of deformations in the middle of the column obtained in 

SDOF for the Direct load and the deformation from the FE 3D 

analysis for the different cases of internal resistance of the wall.  

Studying Figure 5.79 and Table 5.21 it is obvious that the simplified method, i.e. the 

Direct load, provides results on the safe side and the deformation of the column 

increases with increasing internal resistance of the wall.  

 

Table 5.21 Maximum deformation of the column obtained in SDOF for the Direct 

load the deformation from the 3D FE analysis for the different cases 

of internal resistance of the wall according to Figure 5.71. 

 

SDOF Direct load 

All cases of Rm 

FE 3D 

Increased Rm, 

 Rm.i 

FE 3D 

Unchanged Rm, 

Rm.u 

FE 3D 

Decreased Rm, 

Rm.d 

umax 

[m] 
0.088 0.046 0.020 0.019 

 

5.7.3.3 Investigation of wall panels in FE model 

The support reactions and deformation for the wall panels are measured along the 

column in points illustrated in Figure 5.80. The deformation in the middle of the 

column is plotted against the wall support reactions for point 1 and 4 for the decreased 

and increased resistance in Figure 5.81 and Figure 5.82, respectively. The support 

reactions in all points along the column compared to the support reactions for a 
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simply supported beam are shown in Section G.4.2. The deformation in the middle of 

the wall for point 1 and 4 for the decreased and increased resistance of the wall are 

compared to the deformation of a simply supported beam in Figure 5.83 and 

Figure 5.84, respectively. 
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Figure 5.80 The different points along the column, for which the support reactions 

and the deformations, in the middle of the wall, are measured. 

 

Figure 5.81 Comparison of the deformation in the middle of the column and the 

support reactions from one wall panel in point 1 and 4 for the case with 

decreased internal resistance of the wall. 

 

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

-20

-10

0

10

20

30

40

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

D
ef

o
rm

a
ti

o
n

, 
u

 [
m

]

R
ea

ct
io

n
, 
R

[k
N

]

Time, t [s]

coparison loads-deformations-elasto

 R  R  uPoint 1 Point 4 Column



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 183 

 

Figure 5.82 Comparison of the deformation in the middle of the column and the 

support reactions from one wall panel in point 1 and 4 for the case with 

increased internal resistance of the wall.  

Comparing Figure 5.81 and Figure 5.82 it is evident that the amplitude of sways in the 

deformation curve of the column is strongly influenced by the magnitude of the 

support reactions which is larger for the wall with increased resistance.  

 

Figure 5.83 The deformation in the middle of the wall with decreased internal 

resistance, measured in point 1 and 4, compared to the deformation 

of a simply supported beam.  
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Figure 5.84 The deformation in the middle of the wall with increased internal 

resistance, measured in point 1 and 4, compared to the deformation 

of a simply supported beam. 

It can be noticed that wall panels with decreased internal resistance show elasto-

plastic behaviour and the frequencies are quite similar. When the internal resistance is 

very low, the reaction forces and deformations of the wall behave more similar to 

each other. The wall panels with increased internal resistance have elastic behaviour 

since the internal resistance is not reached (see Figure 5.77)and thus the frequencies 

are quite different.  

 

5.7.3.4 Influence of internal resistance 

For the elasto-plastic model, the internal resistance of the wall is varied according to 

Section 5.7.3.1. The column simulated in SDOF has been subjected to the Direct load, 

Reaction load 5 and 6, according to Figure 5.41. For each case of Reaction load the 

resulting deformation of the column has been compared to the deformation caused by 

application of the Direct load, see Figure 5.73 and Figure 5.76. The deformation 

obtained from the Direct load in SDOF has been compared to the deformation 

obtained in the 3D FE analysis, Figure 5.79. The deformation and support reactions 

for the wall panel 1 and 4, according to Figure 5.80, for the decreased and increased 

resistance of the wall, have also been compared. 

It is clear that the deformation of the column as well as the reaction forces from the 

wall panels increases with increasing internal resistance of the wall.   

When the internal resistance of the wall is decreased, the simplified method in SDOF 

always provides results on the safe side. For the case when the internal resistance of 

the wall panels is increased, the simplified method is on the safe side for all cases 

except for Reaction load 6, see Figure 5.76. However, Reaction load 6 can be 

considered to be excessive since the impulse of the load is twice as large as the 

impulse of the External load applied on the structure, see Figure 5.77. Moreover, the 

deformation from 3D FE analysis, which is considered to provide the most realistic 
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results, are lower than in SDOF when the Direct load is applied. Therefore, the 

simplified method can be considered to be on the safe side.  

When the wall panels have decreased internal resistance, the internal resistance is 

reached and the panels have elasto-plastic behaviour. For the case of wall panel with 

resistance Rm.i, the internal resistance is not reached why the panels have elastic 

behaviour for the considered load, see Figure 5.77. 

 

5.8 Concluding remarks 

The aim of this study was to evaluate the concept of load application in the simplified 

method of the frame analysis proposed by Johansson (2013). Both this method, when 

applying a direct load, as well as applying the load due to dynamic reaction of the 

wall, on the column, has been implemented in the SDOF system. The results from the 

analytical method have been compared with a 3D FE analysis. Finally, a parametric 

study is carried out in order to provide a more comprehensive understanding of the 

response of the studied structure subjected to impulse load.  

One main conclusion from this study is that when comparing the SDOF analysis and 

the 3D FE analysis, for each type of load studied, the SDOF analysis provides results 

on the safe side. 

When comparing the results obtained in SDOF for the different loads for the elastic 

model, the direct load did not result in the largest deformation. This was due to the 

fact that the frequency of the reaction loads coincided with the frequency of the 

deformation, which increased the deformation further. The largest deformation was 

obtained for the reactions prolonged in time which can be considered as critical. 

However, as the largest deformation occurs further in time it can be disregarded with 

consideration to the natural damping effect.  

For the elasto-plastic response the direct application of load provided results much on 

the safe side compared to the 3D analysis. Substituting this load for the dynamic 

reaction still provided conservative results but the difference to the response of the 3D 

FE analysis was decreased.  

The plastic deformation capacity check showed that for the SDOF simulations, the 

structure did not possess the capacity to withstand the different loads if reinforcement 

of Class B was used. If Class C was used, the structure did possess the capacity to 

withstand the Direct load and the first part of the delayed load, but not when it was 

extended. The 3D FE analysis showed that the structure would not collapse for 

reinforcement of Class B nor Class C, proving that the SDOF calculations are well on 

the safe side.  

When adapting the support reactions of a simply supported beam in the analytical 

method, it is obvious that they cannot be fully simulated using a SDOF model. This is 

due to the fact that the support of the wall panels is the column, which stiffness 

corresponds to a spring and not a fixed support. Because of this the true behaviour of 

the structure is very complicated to create in the SDOF model.  

The 3D FE analysis also showed that the shape of the deformation curve for the 

column does not act as in a 2D FE analysis. This issue has been proved to be strongly 

influenced by the difference in frequencies of the different support reactions from the 

wall panels. The divergence of the frequencies in reaction loads decreases the effect 

of the load on the column and makes the simulation of the response difficult to 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 186 

conduct in the analytical method. It should be remembered that this method of 

analysis should be simple and fast to implement. Simultaneously it should provide 

good results with an acceptable margin of safety. The analytical method has not 

provided satisfactory results in this study. The obtained differences with regard to the 

FE analysis are large and even though they are on the safe side they cannot be fully 

accepted. Further investigations of the 3D response are recommended.  

The 3D FE model was built of several wall panels instead of one wall, which created 

seven point loads along the column instead of one uniformly distributed load. In 

reality, these wall panels would be connected as one and it is not studied if the 

reaction forces in the different support points would counteract in the way they did in 

this analysis, creating an uneven behaviour of the column.  

It is worth to mention that the different response models provided different values of 

deformation of the column. For the simplified method conducted in SDOF the 

difference between the deformation of the column simulated with the elastic and 

elasto-plastic response model is about 50 %. This is due to the fact that the internal 

resistance in the elasto-plastic case forces the reaction from the wall panels to have a 

lower magnitude and a longer duration, which is less destructive for the column.   

The parametric study proved that for high values of stiffness and internal resistance of 

the wall the deformation of the wall is small. However the deformation of the column 

is larger than for the case with low stiffness and low internal resistance of the wall. 

Thus, the proper choice of wall parameters becomes a critical issue as it affects the 

response of the column which is the load bearing element in the considered structure.  

A conclusion that can be drawn is that if the stiffness of the wall is decreased, the wall 

can be related to the behaviour of a simply supported beam. If the stiffness of the wall 

is increased, the response of the wall corresponds to the response of a beam supported 

on springs.  

Moreover, when comparing the results from the simplified method to the deformation 

obtained in the 3D FE analysis, the analytical method proposed by Johansson (2013) 

provides results on the safe side for all cases studied. However, when the parameters 

for which the study is done are further increased the difference between the results 

from the analytical and numerical method decreases.  
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6 Conclusions 

6.1 Final comments 

 Parametric beam study 6.1.1

A parametric beam study was carried out in order to investigate the important 

parameters for the concrete sections with reinforcement at both sides subjected to 

impulse load. The influence of including the top reinforcement in the calculations was 

also evaluated. It was proven that for most cases it could be considered conservative 

to neglect the top reinforcement when calculating the internal work. However, for a 

certain interval the internal energy was higher for a case without top reinforcement 

than for a case with top reinforcement due to decrease in the plastic rotation capacity 

curve in Eurocode 2. Within these intervals the conservative way would be to 

consider the top reinforcement. However, if the top reinforcement did not yield it did 

not influence the internal resistance in a significant way and could then be 

disregarded.  

A study of different interpretations of the distance to the reinforcement from the top 

of the beam, d, depending on the neutral axis was also carried out for calculations of 

the plastic deformation capacity. However, the conclusion is to follow the simplest 

way of interpreting d, which is only considering the bottom reinforcement. For the 

studied cases, this provided results on the safe side for most cases.  

 

 Structural response of a 2D frame 6.1.2

A single degree of freedom system, SDOF system, was used in order to simulate a 2D 

frame where the front column was presented by a local SDOF model and the whole 

frame was modelled with a global SDOF model. The response from the elastic local 

and global model agreed well with the FE analysis. Thus it can be stated that a SDOF 

system can be used in order to describe the linear elastic response of both the local 

and global model. The local and global elastic models proved to provide results, in the 

middle of the front column, that corresponded well with the FE analysis when 

combined.  

The elasto-plastic models were to be more complicated than the elastic. The structural 

response model of the local frame model proved to be trilinear, even though the 

material response model was bilinear, resulting in a higher first deformation peak. The 

trilinear response model is due to the fact that the structure can develop two plastic 

hinges, one at the fixed support and one in the span. A comparison between the 

bilinear and trilinear structural response models showed that the obtained deformation 

was roughly the same for the two models, and a bilinear response model is not on the 

safe side, but can be used for estimations of the deformation. For cases with a low 

plastic deformation capacity, it is suggested to be more careful when choosing a 

simplified response model. 

The global elasto-plastic model also proved to have a trilinear static response model in 

the SDOF system. However, this static response model did not fully represent the 

behaviour of the global frame since it showed some plastic deformation even though 

the response obtained in the SDOF model was limited to elastic behaviour. The 

response of the global model seemed to be affected by the local model and therefore, 

it became complicated to describe in SDOF. An interaction between the local and 
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global model is the probable reason for the behaviour in the 3D FE model. However, 

this is not captured by the simplified models used in this study and to capture the 

behaviour a more complex model is needed in order to describe the interaction of 

additional modes of the frame. A complete understanding of this behaviour has not 

been found and further investigations are needed in order to improve the 

understanding. 

 

 Structural response of a 3D frame 6.1.3

The 3D behaviour of the front wall and front column of the frame has been 

investigated where the wall was modelled as seven wall panels on each side of the 

front column. A comparison was done between a simplified SDOF model, when the 

total load was applied on the front column at the same time, and when the load 

application was delayed due to the dynamic reaction of the wall. The approximated 

method of simulating the 3D effect in the SDOF calculations was to first calculate a 

load from a SDOF analysis simulating the response of the wall. The delayed load was 

modelled by a 3D FE model with a column supporting the wall panels.  

When comparing the SDOF analyses and the 3D FE analyses, for each type of load 

studied, the SDOF analyses always provided results on the safe side. The simplified 

method can be considered to be on the safe side, but since the difference can be quite 

large compared to the FE model it can be concluded that there is room for 

improvement.  

The reaction loads with an impulse bigger than the direct load have proven not to 

correspond better to the 3D FE analysis. Therefore the delayed load in SDOF is 

recommended to be modelled with the same impulse as the external load.   

Applying the load though the wall to the column in form of dynamic reaction, instead 

of directly applying it on the column can have a favourable effect on the response of 

the column. A less stiff wall induced less stress in the column down to a certain level 

depending on the relationship between the stiffness and capacity of the column and 

wall. A wall with a low stiffness and internal resistance provided a lower load on the 

column.  

 

6.2 Further investigations 

The knowledge of reinforced concrete structures subjected to impulse load is limited. 

Consequently, there are several investigations that can be carried out in order to get a 

deeper knowledge within this subject, focusing on frame structures.   

In the 2D frame study, the global elasto-plastic case was not fully understood why 

further studies are recommended. The static response model did not completely 

correspond with the dynamic results obtained in the FE analysis why further 

investigations are recommended. Considering the interaction between the local and 

global elasto-plastic models it is suggested that further investigations are carried out 

to better predict the true behaviour of the frame. To study the interaction between the 

local and global analysis a two degrees of freedom system is probably required.  

Carlsson and Kristensson (2012) found a transformation factor for damping in the 

central difference method for a simply supported beam. For a frame structure, this 

transformation factor would differ from a simply supported beam and also would 
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differ for the local and global models. A future study is recommended in order to find 

these transformation factors and to explain the theoretical background of how to 

determine them.   

In this Master’s Thesis it has been assumed that the plastic hinges are formed when 

the maximum stress is reached without any consideration to the history of the 

reinforcement. It can be questioned if the reinforcement changes properties after the 

plastic hinges have been formed in both directions several times. This is a subject 

which has not been further investigated in this Master’s Thesis.  

In the 3D FE analysis, the 3D FE model was built of several wall panels instead of 

one wall model. This created seven point loads along the column instead of one 

uniformly distributed load. In reality, these wall panels would be connected and it is 

not sure if the reaction forces at the different wall supports would counteract in the 

same way as in this analysis. Therefore, this FE model cannot be considered to 

simulate the true behavior of the structure. Further studies of the 3D structure are 

desierable to provide a deeper understand the resulting response and to capture it with 

a more simple model.  
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APPENDIX A Hand Calculations 

 Introduction A.1

In order to fast get a result of the maximum values, hand calculations can be used 

instead of numerical SDOF calculations or FE analyses. The hand calculations are not 

time dependent. The equations used are stated in following sections.  

 

 Deformations A.2

The maximum deformations for the elastic, plastic and elasto-plastic case are 

calculated as 
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k
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  (7.2) 

m

km
pl,epel,epep

mR

I

k

R
uuu

22

2

  (7.3) 

where Ik is the characteristic impulse load, m is the mass, k is the stiffness, ω is the 

angular frequency and Rm is the resistance. The transformation factors used to create 

the equivalent mass and stiffness are found in Table 2.4 and Table 2.5. 

 

 Stiffness and moment of inertia A.3

The stiffness for a simply supported beam is calculated as 

35

384

L

EI
k   (7.4) 

where E is the Young´s modulus and L is the length. The moment of inertia, I, is for 

the elastic case is calculated in different ways depending on if the section is cracked 

or not. For an uncracked rectangular cross section, state I, the moment of inertia is 

calculated as 
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where b is the width, h is the height and xcg is the distance from the top of the beam to 

the centre of gravity of the cross section. The notations As´ and As represents the area 

of the top and bottom reinforcement and d´ and d is the distance from the top of the 

beam to the top and bottom reinforcement, respectively. The parameters used for 

calculating the moment of inertia of the uncracked beam are shown in Figure 7.1.  
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Figure 7.1 Model illustrating the parameters of the beam. 

The factor α is the relation between the Young’s modulus of steel Es and concrete Ec 

calculated as 

c

s

E

E
  (7.6) 

For a case where the cross section is symmetric, the centre of gravity, xcg, is calculated 

as 

2

h
xcg   (7.7) 

For a case where the cross section is cracked, state II, equation (7.8) is used to 

calculate the moment of inertia: 
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where xII is the distance from the top of the beam to the neutral axis. For a cracked 

beam the neutral axis and the centre of gravity doesn´t coincide like it does for the 

uncracked section. In a case where no axial forces are acting on the beam, the neutral 

axis is calculated, using area equilibrium, as 
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  Moment resistance A.4

A.4.1  Main concept 

For a plastic case, the maximum resistance needs to be calculated in order to calculate 

the displacement. For a simply supported beam with a uniformly distributed load, the 

maximum resistance, Rm, is calculated as 

L
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where L is the length. The resisting moment, Mrd, is calculated by force and moment 

equilibrium from Figure 7.2. The calculations depend on if the section has top 

reinforcement or not and if the reinforcement yielding or not. The different 

calculations are presented in Section A.4.2 and A.4.3.  
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Figure 7.2 Concrete bream with top and bottom reinforcement. 

The design values for steel, fyd, and concrete strength, fcd, are calculated as 

2.1
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f
f   (7.11) 
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where fck is the characteristic concrete strength and fyk is the characteristic yield 

strength. The relation between the steel yield strength, fyd, and the modulus of 

elasticity of steel, Es, is noted by sy  and calculated as 
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A.4.2  Section without top reinforcement 

For a case without top reinforcement, the neutral axis, xIII, when the ultimate concrete 

strain is reached is calculated using equation (7.14) assuming that the bottom 

reinforcement is yielding. 
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To check if the reinforcement is yielding or not, a control of the strain at the level of 

bottom reinforcement, εs, is done as 
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where cu is the ultimate concrete strain.  

For a case when the bottom reinforcement is not yielding, a new position of the 

neutral axis, xIII, is calculated by solving  

080 
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 scus

III

III
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x

xd
bx.f   (7.16) 

Now, the moment capacity, Mrd, can be calculated by moment equilibrium around the 

bottom reinforcement: 

)x.d(bx.fM IIIIIIcdrd  4080  (7.17) 

 

A.4.3  Section with top reinforcement 

For a case with top reinforcement, the neutral axis is first calculated assuming only 

yielding at the bottom reinforcement. The neutral axis, xIII, is then decided from 
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To check if the top reinforcement is yielding or not, the strain at the top reinforcement 

is calculated using equation (7.19) and compared with the steel yield strain sy : 
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If the top reinforcement is not yielding, εs´ < εsy, the moment resistance is found as 
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However, if the top reinforcement is yielding, εs´ ≥ εsy, a new neutral axis, xIII,  is 

estimated from 

080  ydsydsIIIcd fAf'Abx.f  (7.21) 

The moment resistance for this case is 

)'dd(f'A)x.d(bx.fM ydsIIIIIIcdrd   4080  (7.22) 

According to Eurocode 2, the contribution to the moment capacity of the compressive 

reinforcement can only be taken into account if stirrups with minimum allowable 

spacing are provided.  
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 Maximum deformation capacity A.5

The maximum deformation can be calculated by multiplying the plastic rotation 

capacity with regard to shear slenderness, θrd, with the distance between a point with 

zero moment and a point where a plastic hinge has occurred, L0. For a simply 

supported beam this is shown in Figure 7.3.  
 

 

 

 

 

L0 

θrd 

urd 

 

Figure 7.3 Plastic rotation capacity and distance to the plastic hinge in the middle 

of the span for a simply supported beam. 

The maximum deformation, urd, can be then calculated as 

00´ LkLu plrdrd     (7.23) 

The plastic rotation, θpl, is received from a graph, Figure 7.4, according to 

Eurocode  2, CEN (2004). 
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Figure 7.4. Diagram for evaluating the plastic rotation capacity according to 

Eurocode  2, CEN (2004). 

Since the graph doesn´t contain exact values, an interpretation of the graph used for 

the analyses conducted in this Master’s Thesis is the following for reinforcement of 

Class B, ≤ C 50/60. 
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For reinforcement of Class C, ≤ C 50/60, the interpretation of the graph is as follows.  
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pl  is multiplied by a factor kλ calculated as 

where 

d

L0  (7.29) 

 

 Internal and external work A.6

The internal energy Wi can be calculated as the area under the graph describing the 

relationship between the static load and the deformation. For an elastic case the 

internal energy is expressed as 
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where k is the stiffness and uel is the elastic deformation. For the plastic case the 

internal energy can be calculated as 
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plmpl.i uRW   (7.31) 

For a characteristic impulse Ik where Rm is the internal resistance and upl is the plastic 

deformation the external energy can be calculated as 
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where Ik is the characteristic impulse load and m is the mass.  

 

 Equivalent static load  A.7

In order to approximate a load that is easier to relate to for most engineers, a dynamic 

load can be translated into an equivalent static load. The size of the equivalent static 

load in an elastic case, Qel, is 

elel ukQ   (7.33) 

where the stiffness k and the deformation uel is depending on if the structure is in 

state I or II, i.e. if it is uncracked or cracked.  

For a plastic case the equivalent static load, Qpl, is equal to the maximum 

resistance Rm 

mpl RQ   (7.34) 

From the equivalent static loads, the resulting moment, Mrd, and shear, Vrd, can for a 

simply supported beam be calculated as 

  

8

LQ
M rd


  (7.35) 

2

Q
Vrd   (7.36) 
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APPENDIX B Additional graphs for Parametric 

beam study 

 Introduction B.1

A compilation of the graphs from the parametric beam study, discussed in Section 3, 

is presented in Section B.2 to Section B.13. The parametric beam study was 

performed for two cases of calculating the effective depth d, called Case 1 and Case 2, 

which are further described in Section B.1.1 and B.1.2, respectively.  

 

B.1.1 Case 1 

Case 1 is when the effective depth d is calculated as the distance from the centre of 

the bottom reinforcement to the top edge of the beam, not depending on the position 

of the neutral axis, as shown in Figure 3.2. 
 

(a) 

b 

As 

x 

d 
h 

As’ 

εs’ 

εs 

 

 
 

(b) 

b 

As 

x 

d 
h 

As’ 

εs’ 

 

εs 

 

Figure B.1 Effective depth according to Case 1. Neutral axis is located: (a) below 

top reinforcement layer, and (b) above. 

 

B.1.2 Case 2 

Case 2 considers the location of neutral axis when calculating the effective depth, d, 

which is calculated as the distance from the centre of the bottom reinforcement to the 

top edge of the beam when the neutral axis is below the top reinforcement. However, 

if the neutral axis is located above the top reinforcement, d is the distance from the top 

edge to the centre of gravity of the uncracked cross section, see Figure 3.3.  
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Figure B.2 Calculation of effective depth for Case 2 when the neutral axis is 

located above the centre of gravity of the top reinforcement. 

 

 Resistance versus deformation for Case 1 B.2

 

Figure B.3 Internal resistance, ultimate deflection and position on the plastic 

rotation capacity graph (Eurocode 2) for a section with a height of 

200 mm and reinforcement 10 s 150. 
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Figure B.4 Internal resistance, ultimate deflection and position on the plastic 

rotation capacity graph (Eurocode 2) for a section with a height of 

200 mm and reinforcement  20 s 200. 

 

Figure B.5 Internal resistance, ultimate deflection and position in the plastic 

rotation capacity graph (Eurocode 2) for a section with a height of 

300 mm and reinforcement 10 s 150. 
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Figure B.6 Internal resistance, ultimate deflection and position in the plastic 

rotation capacity graph (Eurocode 2) for a section with a height of 

300 mm and reinforcement 20 s 200. 

 

Figure B.7 Internal resistance, ultimate deflection and position in the plastic 

rotation capacity graph (Eurocode 2) for a section with a height of 

400 mm and reinforcement  10 s 150. 
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Figure B.8 Internal resistance, ultimate deflection and position in the plastic 

rotation capacity graph (Eurocode 2) for a section with a height of 

400 mm and reinforcement  20 s 200. 

 

 Plastic rotation capacity for Case 1 B.3

 

Figure B.9 Plastic rotation capacity θpl vs. reinforcement amount ρ for a section 

with a height of 200 mm. 
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Figure B.10 Plastic rotation capacity θpl vs. reinforcement amount ρ for a section 

with a height of 300 mm.  

 

Figure B.11 Plastic rotation capacity θpl vs. reinforcement amount ρ for a section 

with a height of 400 mm.  
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 Internal work for Case 1 B.4

 

Figure B.12 Internal work vs. reinforcement amount ρ for a section with a height of 

200 mm.  

 

Figure B.13 Internal work vs. reinforcement amount ρ for a section with a height of 

300 mm.  
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Figure B.14 Internal work vs. reinforcement amount ρ for a section with a height of 

400 mm.  

 

 Internal resistance for Case 1 B.5

 

Figure B.15 Internal resistance vs. reinforcement amount ρ for a section with a 

height of 200 mm.  
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Figure B.16 Internal resistance vs. reinforcement amount ρ for a section with a 

height of 300 mm. 

 
Figure B.17 Internal resistance vs. reinforcement amount ρ for a section with a 

height of 400 mm.  
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 Maximum plastic deformation for Case 1 B.6

 

Figure B.18 Maximum plastic deformation vs. reinforcement amount ρ for a section 

with a height of 200 mm.  

 

Figure B.19 Maximum plastic deformation vs. reinforcement amount ρ for a section 

with a height of 300 mm.  
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Figure B.20 Maximum plastic deformation vs. reinforcement amount ρ for a section 

with a height of 400 mm.  
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Figure B.21 Ratio of internal work, Gamma Wi, vs. reinforcement amount ρ. The 

section has a height of 200 mm.  

 

Figure B.22 Ratio of internal work, Gamma Wi, vs. reinforcement amount ρ. The 

section has a height of 300 mm. 
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Figure B.24 Ratio of ultimate plastic deformation, Gamma urd, vs. reinforcement 

amount ρ. The section has a height of 200 mm.  
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Figure B.23 Ratio of internal work, Gamma Wi, vs. reinforcement amount ρ. The 

section has a height of 400 mm. 
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Figure B.25 Ratio of ultimate plastic deformation, Gamma urd, vs. reinforcement 

amount ρ. The section has a height of 300 mm. 

 

Figure B.26 Ratio of ultimate plastic deformation, Gamma urd, vs. reinforcement 

amount ρ. The section has a height of 400 mm. 
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Figure B.27 Ratio of internal resistance, Gamma Rm, vs. reinforcement amount ρ for 

a section with a height of 200 mm.  

 

Figure B.28 Ratio of internal resistance, Gamma Rm, vs. reinforcement amount ρ for 

a section with a height of 300 mm.  
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Figure B.29 Ratio of internal resistance, Gamma Rm, vs. reinforcement amount ρ for 

a section with a height of 400 mm.  
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 Resistance versus deformation for Case 2 B.8
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Figure B.30 Internal resistance, ultimate deflection and position in the plastic 

rotation capacity graph (Eurocode 2) for a section with a height of 

200 mm and reinforcement  10 s 150.  
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Figure B.31 Internal resistance, ultimate deflection and position in the plastic 

rotation capacity graph (Eurocode 2) for a section with a height of 

200 mm and reinforcement  20 s 200.  

 

   

0

50

100

150

200

250

300

350

0.00 0.01 0.02 0.03 0.04 0.05 0.06

R
es

is
ta

n
ce

 R
[k

N
]

Deformation, u [m]

R_u_d2_200_fi20

Case B

Case C

B

C

5.0

7.5

10.0

12.5

15.0

0.00 0.10 0.20 0.30 0.40 0.50

P
la

st
ic

 r
o
ta

ti
o
n

 θ
p

l[
1
0

-3
ra

d
]

x/d [-]

Plastic rotation θpl according to EC 2



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 217 

 
 

x 

d=h/2 

Case A, xc 

σ' 
x 

d 
σ' 

Case A, x>c 

x 

d 

Case B 

x 

d=h/2 

Case C, xc 

x 

d 

σ' 

Case C, x>c 

 

Figure B.32 Internal resistance, ultimate deflection and position in the plastic 

rotation capacity graph (Eurocode 2) for a section with a height of 

300 mm and reinforcement  10 s 150.  
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Figure B.33 Internal resistance, ultimate deflection and position in the plastic 

rotation capacity graph (Eurocode 2) for section with a height of 

300 mm and reinforcement  20 s 200. 

  

0

100

200

300

400

500

600

0.00 0.01 0.02 0.03 0.04 0.05

R
es

is
ta

n
ce

 R
[k

N
]

Deformation, u [m]

R_u_d2_300_fi20

Case A

Case B

Case C

A

B
C

5.0

7.5

10.0

12.5

15.0

0.00 0.10 0.20 0.30 0.40 0.50

P
la

st
ic

 r
o

ta
ti

o
n

 θ
p

l[
1

0
-3

ra
d

]

x/d [-]

Plastic rotation θpl according to EC 2



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 219 

 
 

x 

d=h/2 

Case A, xc 

σ' 
x 

d 
σ' 

Case A, x>c 

x 

d 

Case B 

x 

d=h/2 

Case C, xc 

x 

d 

σ' 

Case C, x>c 

 

Figure B.34 Internal resistance, ultimate deflection and position in the plastic 

rotation graph capacity (Eurocode 2) for a section with a height of 

400 mm and reinforcement  10 s 150.  
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Figure B.35 Internal resistance, ultimate deflection and position in the plastic 

rotation capacity graph (Eurocode 2) for a section with a height of 

400 mm and reinforcement  20 s 200.  
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 Plastic rotation capacity for Case 2 B.9

 

Figure B.36 Plastic rotation capacity θpl vs. reinforcement amount ρ for a section 

with a height of 200 mm.  

 

Figure B.37 Plastic rotation capacity θpl vs. reinforcement amount ρ for a section 

with a height of 300 mm. 
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Figure B.38 Plastic rotation capacity θpl vs. reinforcement amount ρ for a section 

with a height of 400 mm. 

 

 Internal work for Case 2 B.10

 

Figure B.39 Internal work Wi vs. reinforcement amount ρ for a section with a height 

of 200 mm.  
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Figure B.40 Internal work Wi vs. reinforcement amount ρ for a section with a height 

of 300 mm. 

 

Figure B.41 Internal work Wi vs. reinforcement amount ρ for a section with a height 

of 400 mm. 
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 Internal resistance for Case 2 B.11

 

Figure B.42 Internal resistance Rm vs. reinforcement amount ρ for a section with a 

height of 200 mm.  

 

Figure B.43 Internal resistance Rm vs. reinforcement amount ρ for a section with a 

height of 300 mm. 
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Figure B.44 Internal resistance Rm vs. reinforcement amount ρ for a section with a 

height of 400 mm. 

 

 Maximum plastic deformation for Case 2 B.12

 

Figure B.45 Maximum plastic deformation urd vs. reinforcement amount ρ for a 

section with a height of 200 mm.  
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Figure B.46 Maximum plastic deformation urd vs. reinforcement amount ρ for a 

section with a height of 300 mm. 

 

Figure B.47 Maximum plastic deformation urd vs. reinforcement amount ρ for a 

section with a height of 400 mm.  
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 Sections with and without top reinforcement for B.13

Case 2 

The ratios, γ, plotted in this section are described in Section B.7. 

 

Figure B.48 Ratio of internal work, Gamma Wi, vs. reinforcement amount ρ. The 

section has a height of 200 mm. 

 

Figure B.49 Ratio of internal work, Gamma Wi, vs. reinforcement amount ρ. The 

section has a height of 300 mm. 
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Figure B.50 Ratio of internal work, Gamma Wi, vs. reinforcement amount ρ. The 

section has a height of 400 mm. 

 

Figure B.51 Ratio of ultimate plastic deformation, Gamma urd, vs. reinforcement 

amount ρ. The section has a height of 200 mm. 
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Figure B.52 Ratio of ultimate plastic deformation, Gamma urd, vs. reinforcement 

amount ρ. The section has a height of 300 mm.  

 

Figure B.53 Ratio of ultimate plastic deformation, Gamma urd, vs. reinforcement 

amount ρ. The section has a height of 400 mm. 
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Figure B.54 Ratio of internal resistance, Gamma Rm, vs. reinforcement amount ρ for 

a section with a height of 200 mm. 

 

Figure B.55 Ratio of internal resistance, Gamma Rm, vs. reinforcement amount ρ for 

a section with a height of 300 mm. 
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Figure B.56 Ratio of internal resistance, Gamma Rm, vs. reinforcement amount ρ for 

a section with a height of 400 mm. 
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APPENDIX C Trilinear structural response 

models 

 

 Introduction C.1

The object of this study is the beam shown in Figure C.1. The critical sections which 

influences the response of this structure are presented in Figure C.1a. Point s in 

Figure C.1b defines the section at the fixed support and Point f defines the midsection, 

for which the maximum stresses are analysed.  

 q, P(t) 

s f 

s 

f 

(a) (b) 

 

Figure C.1 (a) Critical sections in the studied beam. (b) Positions, within the 

sections, where the maximum stresses occur.  

 

 Ultimate moments and resistances for the local frame C.2

model 

The resistance of the span and the critical support section can be established by 

superimposing the moment diagrams for separate load cases. For a beam fixed at 

both supports, the moment distribution in ultimate limit state, when the plastic 

hinges at both considered sections has been formed, is presented in Figure C.2.  
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q 

L 

Ms1 =Mrd 

 

L/2 L/2 

Ms2 =Mrd 

 

      Mf=Mrd 
qL

2
/8 

 

 

Figure C.2 Superimposing the moment diagrams for separate load cases. 

This can be described as 

 21

2

2

1

8
ssf MMM

Lq



 (C.1) 

In the local model of the frame studied in Chapter 4, the column is described as a 

structure with one fixed edge and one simply supported. In this case 

02 sM  (C.2) 

and the equation (C.1) can approximately be written as 

1

2

2

1

8
sf MM

Lq



 (C.3) 

Both critical sections, at the fixed support and in the span, are provided with the 

same amount of reinforcement and as the calculations are made in ultimate limit 

state, both sections will reach the moment capacity they were designed for, Mrd. 

Thus, 

rd.sf MMM  1  (C.4) 

When the beam is subjected to increasing load, the section at the fixed support first 

reaches its ultimate capacity for the load qs. The ultimate moment it can withstand is 

8

2

1

Lq
M s

s


  (C.5) 
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When the load is further increased to qf, the ultimate moment which the section in 

the span can withstand when the plastic hinge at the fixed support and in the span is 

created and the collapse mechanism forms is calculated from equation (C.3) as 

rd

f
M

Lq

2

3

8

2




 

(C.6) 

12

2Lq
M

f

f


  (C.7) 

Knowing the ultimate moment for both sections, Ms and Mf, the maximum resistance 

for the section at the fixed support is established as 

L

M
R rd

ms




8
 (C.8) 

and for the critical section in the span as 

L

M
R rd

mf




12
 (C.9) 

 

 Structure subjected to impulse load C.3

The general model for the response of a statically indeterminate structure subjected to 

impulse load is developed by simulating the loading and is presented in Figure C.3. 
 

Wel.1 
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Rms 

 

Rms 

 

8 

 

 

Figure C.3 The response model, representing the response of an impulse loaded 

statically indeterminate structure for the elasto-plastic case. 

In this model, resisitance Rms and Rmf corresponds to the resistance for which yielding 

at section s and section f in Figure C.1 begins. The notations k1 and k2 represents the 
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stiffnesses of the beam before reaching the ultimate resistance at the fixed support, 

Rms, and in the span, Rmf , respectively.  

When the load is applied, the resistance and deformation increases. The studied model 

represents a case where the structure starts to sway back when its ultimate resistance 

is reached (at point 2) and then starts to sway dynamically. For the load direction 

presented in Figure C.1a, the beam deforms downwards which is indicated as positive 

deformation. 

A description of the response model in Figure C.3 is presented in Table C.1 while the 

development of the stress and strain for both critical sections is illustrated in 

Figure C.4.  
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Figure C.4 Development of stresses for (a) section s and (b) section f. 
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Table C.1 Course of events when the structure shown in Figure C.1 is hit by an 

impulse load P(t). The numbered points can be seen in Figure C.3 and 

Figure C.4. 

Point Description 

1 To start with, the structure yields in section s, which is described as point 1 

in Figure C.3 and Figure C.4. The obtained stresses for section s and f are 

positive tensile stresses. When the structure reaches point 1, a decrease in 

stiffness, from k1 to k2, occurs. The stiffness k1 corresponds to the stiffness 

of a beam which is fixed at one support and simply supported at the other. 

Stiffness k2 represents the stiffness of a simply supported beam. 

2 When the load is further increased, yielding in section f occurs and point 2 is 

reached. If the load had been further increased, a plastic plateau would have 

been developed, which is described with a dashed line in Figure C.3. At 

point 2 the structure starts to sway back since the total external work has 

been taken by the internal work of the structure. From this point the 

structure starts to sway dynamically without any external load. At first, the 

structure follows the elastic stiffness k1 which is a consequence of the 

changed direction.  

3 Point 3 defines when the stresses at section s reach zero, see Figure C.4a. 

After passing this point the stresses in the section increases, but in the other 

direction, i.e. the stresses at section s becomes compressive instead of 

tensile.  

4 When section A begins to yield again point 4 is reached, and as a 

consequence the stiffness is again decreased to k2. 

5 Point 5 indicates when yielding occurs in the span again. However, for this 

impulse loaded structure, point 5 is never reached since the structure starts 

to sway back before this happens. This phenomenon is due to the fact that 

the structure deforms depending on the elastic energy which is illustrated as 

the area below the graph in Figure C.3. 

6 When the areas Wel.1 and Wel.2 are equal, the structure changes direction and 

starts to sway in the positive direction again.  

7 After point 6 the structure starts to oscillate elastically between point 6 and 7 

since the work Wel.3 and Wel.4 are equal. The stiffness of these oscillations is 

k1. 

8 At point 8 in Figure C.3 the structure only possesses kinetic energy and the 

potential energy is zero. 
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 Structure subjected to a static load C.4

When the local frame model, a beam with one edge simply supported and one edge 

fully fixed, is subjected to a static load the areas under the resistance-deformation 

curve does not necessarily have to match as for an impulse loaded structure.  

If the static load is increasing, the resistance, deformation or both will increase 

depending on the position on the resistance-deformation curve and vice versa. 

Figure C.5 illustrates the response curve of a structure where the deformation is 

increasing up to point 3, decreasing to point 5 and increasing again to point 7. The 

response of the structure is further described in Table C.2. 
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Figure C.5 The response model of a statically loaded structure where the 

deformation is increasing from point 1 to 3, decreasing from point 3 to 5 

and increasing again between point 5 and 7.  

The course of events is described in Table C.2. 
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Table C.2 Course of events for the structure subjected to a static load q. The 

numbered points are shown in Figure C.5. 

Point Description Deformation 

1 The structure yields at the fixed support, point 1, and the 

stiffness is decreased from k1 to k2.  

Increases 

2 The structure yields at the span, point 2, and a plastic plateau 

is developed. Here, the static load is constant but the 

deformation is increasing.  

Increases 

3 At point 3 the deformation starts to decrease and the resistance 

decreases with a stiffness k1.  

Starts to 

decrease 

4 At point 4 the resistance has decreased with the amount ΔR, 

corresponding to two times the resistance Rms. The section 

yields at the fixed support in the opposite direction.  

Decreases 

5 At point 5 the static load starts to increase again and the 

resistance is increasing with a stiffness of k1. 

Starts to 

increase 

6 The resistance increases from point 5, with a stiffness of k1, 

until the amount ΔR is reached and a plastic hinge at the fixed 

support is developed at point 6. 

Increasing 

7 The resistance increases with the stiffness k2 until the plastic 

plateau is reached and the section yields in the span at point 7.  

Increasing 

 

The development of the resistance and deformation for the structure described in 

Figure C.6 is explained in Table C.3. In this case the deformation increases up to 

point 2 where it starts to decrease until point 5. From point 5 to point 8 the 

deformation is increasing.  
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Figure C.6 The response model of a statically loaded structure where the 

deformation is increasing from point 1 to 2, decreasing from point 2 to 5 

and increasing again between point 5 and 8.  

 

Table C.3 Course of events for the local front column subjected to a static load q. 

The numbered points are shown in Figure C.6. 

Point Description Deformation 

1 The structure yields at the fixed support, point 1, and the 

stiffness if decreased from k1 to k2.  

Increases 

2 The static load starts to decrease and therefore the resistance 

start to decrease before the span has yielded. The resistance 

decreases with a stiffness of k1.  

Starts to 

decrease 

3 At point 3 the fixed support yields in the opposite direction 

and the stiffness is changed from k1 to k2.  

Decreases 

4 At point 4 the span yields and a plastic plateau starts to 

develop. At this point the static load is constant. 

Decreases 

5 At point 5 the static load starts to increase again and the 

resistance is increasing with a stiffness k1. 

Starts to 

increase 

6 The resistance increases from point 5, with a stiffness k1, until 

the amount ΔR is reached and a plastic hinge at the fixed 

support is developed at point 6 where the stiffness is changed 

to k2.  

Increasing 

7 The resistance increases with the stiffness k2 until the plastic 

plateau is reached and the section yields in the span at point 7.  

Increasing 

8 As the load increases further the deformation increases and 

the resistance is constant on the plastic plateau.  

Increasing 
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APPENDIX D Central difference method 

 Introduction D.1

The central difference method, described in equation (D.1), is an explicit calculation 

method which can be used for approximating the solution of the equation of motion at 

a certain time t. 

where m is the mass, ü is the acceleration, c is the damping, u  is the velocity, k is the 

stiffness, u is the displacement and F(t) is the external force. 

 

 Calculation method D.2

The calculation method uses the displacements at time t and t - t, ut and ut-t, in order 

to find the displacement at time t + t, ut+t, as shown in Figure D.1. Equation (D.1) 

can be written as 

where the index t implies the time. The mass m, stiffness k and damping c are constant 

in time, i.e. m = mt, c = ct and k = kt. 

 

ut+t 

ut 

ut-t 

t 

u 

 

Figure D.1 In the central difference method, ut-t and ut is used to find the solution of 

ut+t (Andersson and Karlsson (2012)). 

The acceleration u at time t can be written as 

The velocity u  at time t is 

)(tFkuucum    (D.1) 

 tFkuucum ttt    (D.2) 

 tttttt uuu
t

u  


 2
1

2
  (D.3) 

 ttttt uu
t

u  



2

1
  (D.4) 
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Inserting equation (D.3) and (D.4) into equation (D.2) gives the following equation 

for the displacement at time t + Δt: 

where R(ut) depends on the material model and structural response model, which are 

further described in Section D.3.  

To calculate the deformation at time t + Δt, information is needed about the 

deformation at both time t and t - Δt. To solve this, a start value is required and the 

deformation at time –Δt, u-t, can be calculated as 

When using the central difference method to solve the equation of motion, a constant 

time step, t, is used. For the method to be stable, the time step must be smaller than a 

certain critical time step. 

where 

To increase the accuracy, especially for a SDOF system, it can be wise to use an even 

smaller time step, 1t , according to 

where t1 is the duration of the load.  

 

 Response models D.3

D.3.1 Introduction 

When calculating the deformation according to the central difference method in this 

Master’s Thesis, Matlab is used. The resistances used in the calculations are estimated 

differently depending on if the response model is elastic or elasto-plastic. For the 

elasto-plastic model a distinction must be done depending on if the model can develop 
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one or two plastic hinges, i.e. if it is bilinear or trilinear. The different response 

models are explained in Section D.3.2 to D.3.4.  

 

D.3.2 Elastic response model 

For the elastic response model, the resistance Rt in equation (D.5) can be written as 

where k is the stiffness and ut is the deformation.  

 

D.3.3 Bilinear elasto-plastic response model 

A bilinear elasto-plastic response model is illustrated in Figure D.2 where 

and where Rm the maximum resistance.  

       

u 
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u1 
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umax 

 

Figure D.2 Resistance-deformation curve for a bilinear elasto-plastic model.  

For mt Rku 0   

tt kuR   (D.10) 

k/Ru m1   (D.11) 

tt kuR   (D.12) 
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For mt Rku   

When the deformation starts to decrease, the maximum deformation is reached and 

the resistance goes back to the elastic mode, though with a plastic deformation. When 

ttt uu   the resistance is changed to 

where the residual plastic deformation, ures, can be calculated as 

D.3.4 Trilinear elasto-plastic response model  

A trilinear elasto-plastic model is illustrated in Figure D.3 where u1 and u2 are the 

deformations for the corresponding resistances Rm1 and Rm2 where the first and second 

plastic hinges is reached. The deformations u1 and u2 can be calculated as 

and 

mt RR   (D.13) 

 restt uukR   (D.14) 

k

R
uu m

res  max  (D.15) 

  

1

m1
1

k

R
u   (D.16) 

2m1m212 )/kR(Ruu   (D.17) 
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Figure D.3 Resistance-deformation curve for a trilinear elasto-plastic model.  

For 110 mt Ruk   

For    21211 mtmm RuukRR   

For   2121 mtm RuukR   

When ttt uu   the resistance is changed to 

where the residual plastic deformation, uresA can be calculated as 

tt ukR 1  (D.18) 

  121 uukRR tmt   (D.19) 

2mt RR   (D.20) 

 resAtt uukR  1  (D.21) 

12max / kRuu mresA   (D.22) 
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where the index max indicates the time at which the maximum deformation is 

reached. 

Now, when the resistance passes a certain value, Rm3, calculated in equation (D.23) 

the stiffness changes to k2. 

When 3mt RR   the resistance changes to 

where 

When the deformation starts to increase again, at uturn, a new residual plastic 

deformation, uresC, can be calculated as  

The resistance have now found equilibrium and will oscillate with the resistance  

  

123 2 mmm RRR   (D.23) 

 resBtt uukR  2  (D.24) 

1123max /2/ kRkRuu mmresB   (D.25) 

1/ kRuu turnturnresC   (D.26) 

 31 restt uukR   (D.27) 
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APPENDIX E Hand calculations for 2D frame 

 Input data E.1

The cross section of the front and back column as well as of the roof beam is 

presented in Figure E.1. Additional dimensions and the reinforcement amount are 

presented in Figure E.2 and Table E.1. The boundary conditions and load type for the 

local and global response model are presented in Figure E.2a and b, respectively, 

while the material parameters are presented in Table E.2. The design values of 

concrete and reinforcement strength, fcd and fyd, are calculated according to 

equation (7.11) and (7.12). Following the recommendation from Chapter 3 the top 

reinforcement is not introduced in the calculation of sectional stiffness and moment 

resistance. The general equations are presented is Appendix A.   

d = 0.15 m 

c1 = 0.05 m b = 1.0 m 

As.w = 6 ϕ 10 

x 

hw = 0.2 m 

 

Figure E.1 Model illustrating the cross section of the 2D frame.  

 

L 

(b) (a) 

 L  L 

 Front column  Back column 

P(t) P(t) 

 

Figure E.2 (a) Local response model; (b) global response model. 

 

Table E.1  Additional parameters of the frame. 

Length 

of the column, L 

[m] 

Length 

of the roof beam, B 

[m] 

Reinforcement 

amount, As 

[10
-4

 m
4
] 

7.0 15.0 5.3 
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Table E.2  Material parameters of the frame.  

Ec 

[GPa] 

fcd 

[MPa] 

Es 

[GPa] 

fyd 

[MPa] 

ρ 

[kg/m
3
] 

33 25 200 500 2 400 

 

The factor α, i.e. the ratio between Es and Ec, for the considered section, calculated 

according to equation (7.6), is 

066
33

200
.  (E.1) 

The moment of inertia for the uncracked section, without consideration to the 

reinforcement, is established according to 

44
33

m10640
12

201

12




 .
.bh

I a.I
 (E.2) 

For a case where the cross section is cracked, state II, and where no axial forces are 

acting on the section, the distance from the top of the cross section to the neutral axis, 

xII, is calculated according to equation (7.9). Thus, for the cross section of the 2D 

frame the distance to the neutral axis, xII, is calculated as 

)(0.1510245066
2

20 4

2

II
II x..

x.


   (E.3) 

resulting in 0.028 m.  

In order to calculate the moment of inertia of the section in state II, equation (7.8) is 

used, which for the 2D frame results in 

4424
3

m10540)0280(0.1510245066
3

028020  


 ....
..

I II
 (E.4) 

The inclination of the first and second branch in the elasto-plastic response curve, k1 

and k2, for local SDOF model with boundary conditions and load type as in 

Figure E.2a is calculated as 

kN/m61007
7

105401033192192
3

49

31 .
.

L

IE
k IIc 









 (E.5) 

kN/m0403
75

105401033384

5

384
3

49

32 .
.

L

IE
k IIc 













 (E.6) 

In the global model the stiffnesses for the front and back column, illustrated in 

Figure E.2b, is established as 
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kN/m941
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10540103388
3

49

3
.

.

L

IE
k IIc

fr.1 
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



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 (E.7) 

kN/m715
7

10540103333
3

49

3
.

.

L

IE
k IIc

1.ba 








 (E.8) 

The neutral axis for when the ultimate concrete strain is reached, state III, is 

calculated using equation (7.14) assuming that the bottom reinforcement is yielding. 

For the 2D frame this results in  

m0130
1102580

1050010245
6

64

.
.

.
xIII 








 (E.9) 

The yielding strain, εsy, for the reinforcement is calculated according to 

equation (7.13). Thus for the considered section it is 

3

9

6

1052
10200

10500 



 .sy  (E.10) 

A control of the strain at the bottom reinforcement, εs, is made according to 

equation (7.15) where the ultimate concrete strain εcu = 0.0035. 

333 1052108361053
0130

0130150  


 ...
.

..
s  (E.11) 

The moment capacity, Mrd, is calculated according to equation (7.17) and for the 2D 

frame it is 

kNm37.80.013)0.4(0.151013.08.01025 6 rdM  (E.12) 

For the local model the resistance Rms corresponds to the ultimate resistance at the 

fixed support and the resistance Rmf corresponds to the ultimate resistance of the 

critical span section. These are calculated according to equation (E.30) and (E.31) 

resulting in 

kN343
7

83788
.

.

L

M
R rd

ms 





  (E.13) 

kN864
7

8371212
.

.

L

M
R rd

mf 





  (E.14) 

The mass of the front and back column is 

kg33602400072001  ...Lhbm   (E.15) 

The mass of the roof beam is 

kg720024000152001  ...Bhbm   (E.16) 
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 Global and local elastic frame models E.2

E.2.1 Deformation 

The elastic deformation of the structure, subjected to characteristic impulse load, is 

calculated from the condition of work equilibrium which is explained in Section 2.7.5. 

The parameters used in this section are calculated in Section E.1 and the values for the 

local and global model are presented in Table E.3 and Table E.4, respectively. 

 

Table E.3  Mass, stiffness and transformation factors used for the local elastic 

model.  

Part m 

[kg] 

κm 

[-] 

k1 

[kN/m] 

κmF 

[-] 

Front column (1) 3 360 0.486 1 007.6 0.805 

 

Table E.4  Mass, stiffness and transformation factors used for the global elastic 

model.  

Part κm 

[-] 

m 

[kg] 

κk= κF 

[-] 

III 

[10
-4

 m
4
] 

k1 

[kN/m] 

Front column (1) 0.257 3 360 0.400 0.54 41.9 

Back column (2) 0.236 3 360 1.000 0.54 15.7 

Roof beam (3) 1.000 7 200 0 0.54 0 

 

The resulting deformation, uel, is described as 

m

I
u k

el   (E.17) 

where Ik is the characteristic load, m the mass and ω the angular frequency, 

calculated as 

m

k
  (E.18) 

For the studied structure, the angular frequency for the local and global system, 

respectively is 

rad/s319
80503360

1061007 3

.
.

.
l.el 




  (E.19) 
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rad/s921
172002360336025703360

100171540941 3

.
..

)...(
gl.el 




  (E.20) 

The total impulse load acting on the considered area of the structure is established as 

Ns525071
2

02501060

2

3
1








.

Lb
tP

AiI
peak

 (E.21) 

The elastic deformation for the local and global model is 

m100
31980503360

5250
.

..m

I
u k

l.el 





 (E.22) 

 
m120

921172002360336025703360

5250
.

...m

I
u k

gl.el 





 (E.23) 

This definition of deformation is established with regard to a characteristic impulse 

load. In order to get the correct value of the deformation for the chosen impulse load 

the deformation should be modified, see Section 2.7.6.  

Thus, the frequency of the dynamic loaded structure, f, and its periodicity, T must be 

established accordingly 





2
f  (E.24) 

f
T

1
  (E.25) 

For the local and global model this gives 

Hz073.f l.el   (E.26) 

Hz300.f gl.el   (E.27) 

s320.T l.el   (E.28) 

s283.T gl.el   (E.29) 

The ratio of the periodicity, T, to the duration of the load, t1, for the local and global 

model, respectively is  

812
0250

320

1

.
.

.

t

T l.el   (E.30) 
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2131
0250

283

1

.
.

.

t

T gl.el
  (E.31) 

For n = 1, which corresponds to a triangular load, and for the calculated relations of T 

to t1, the impulse factors γ1, according to Section 2.7.6.2 are 

01.l.I   (E.32) 

01.gl.I   (E.33) 

This means that the chosen load, with a peak value of 60 kPa and a duration of 

0.025 s, corresponds to a characteristic impulse load. Therefore the magnitudes of the 

calculated deformations are realistic and do not need to be modified. 

 

 Local elasto-plastic frame model E.3

E.3.1 Deformation 

The parameters used in this section are calculated in Section E.1 and are presented in 

Table E.5.  

 

Table E.5  Mass, stiffness and transformation factors used for the local elasto-

plastic model.  

Part m 

[kg] 

κm 

[-] 

k1 

[kN/m] 

k2 

[kN/m] 

κk= κF 

[-] 

Mrd 

[kNm] 

Rms 

[kN] 

Rmf 

[kN] 

Front 

column 

(1) 

3 360 0.333 1 007.6 403.0 0.500 37.8 43.3 64.9 

 

The elasto-plastic deformation of the structure, uep, is described as 

m

km
pl,epel,epep

mR

I

k

R
uuu

22

2

  (E.34) 

where uep,el and uep.pl are the elastic and plastic parts of the elasto-plastic deformation. 

Rm is the maximum resistance, Ik is the characteristic load and m and k is the mass and 

stiffness, respectively.  

The total impulse acting on the considered area of the structure has a magnitude 

of 5250 Ns according to equation (E.21).  

The deformations u1 and u2 is 
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mm942
1

1 .
k

R
u ms   (E.35) 

mm596
2

12 .
k

RR
uu

msmf



  (E.36) 

Since the stiffness in equation (E.34) is meant for a bilinear case, two stiffnesses are 

used in these hand calculations. The first stiffness is taken as the stiffness for a beam 

with one fixed edge and one simply supported, k1. The second stiffness is taken as the 

secant stiffness, k3, according to Figure E.3. The stiffness that would give the correct 

results should lie in between these values.  

 
 
  

R 

u 

 

k1 

 

k2 

R 

u 

 

k1 

R 

u 

 k3 

(a) (b) (c) 

Rms 

  Rmf 

 u1 
 u2 

 

Figure E.3 (a) Stiffness of the elasto-plastic local front column (b) Simplified 

bilinear case with stiffness k1 (c) Simplified bilinear case with 

stiffness k3.  

The stiffness k3 is calculated as follows 

m

kN
671

2

3 
u

R
k

mf
 (E.37) 

 

Now the deformations can be calculated. Deformation for stiffness k1 respective 

stiffness k3, estimated according to equation (E.34) is 

 
m1270

1086450336033302
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1061007502

1086450
3
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1 .
...
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  (E.38) 
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  (E.39) 

 

  



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 253 

E.3.2 Plastic deformation capacity 

The calculation of the plastic deformation capacity for the local elasto-plastic frame 

model is presented in this section. The concept of calculating the required deformation 

capacity for a trilinear model is described in Section E.3.1 and the hand calculation 

method is presented in Section A.5. Parameters and dimensions of the studied frame 

are presented in Section E.1. Properties of the chosen impulse load can be found in 

Section 4.3. 

In order to calculate the distance from the simply supported edge to where the 

maximum moment is, L0, the reaction force at the simply supported edge, R1, and the 

equivalent static load, q1, is calculated as  

m

kN
601  bPq peak  (E.40) 
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R rd  (E.41) 

 

L0 can now be calculated as 

m180m
1060

102052
7

2
3

3

1

1
0 .

q

R
LL 




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
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
  (E.42) 

 

The shear slenderness λ and the factor for allowed plastic rotation capacity, kλ, is 

201
150

1800 .
.

.

d

L
  (E.43) 

The plastic rotation capacity, θpl, for reinforcement of Class B and Class C is 

calculated according to Section A.5 which for the local frame gives 

The modified values of the plastic rotation capacities with regard to shear slenderness, 

θrd, can now be calculated as 

The plastic deformation capacities, urd, can be calculated as 

630
3

.k 


  (E.44) 

rad10710 3 .plB  (E.45) 

rad10133 3 .plC  (E.46) 

rad1086 3 .kplBrdB   (E.47) 

rad10021 3 .kplCrdC   (E.48) 
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The total deformation capacity, urd.tot, is the sum of the elastic deformation, u1, and the 

plastic deformation capacity, urd, and is calculated as 

where the elastic deformation u1 is calculated in equation (E.35).  

mm123
1

1 .
q

R
u rdBrdB    (E.49) 

mm671
1

1 .
q

R
u rdCrdC    (E.50) 

  mm066mm9421231 ...uuu rdBtot.rdB   (E.51) 

  mm5114mm9426711 ...uuu rdCtot.rdC   (E.52) 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 255 

APPENDIX F Study of 3D structure 

 Input data  F.1

F.1.1 Wall 

The cross section of the wall panels is presented in Figure F.1. Additional dimensions 

and the reinforcement amount are presented in Table 5.2 and the material parameters 

are presented in Table F.2. The design values of the concrete and reinforcement 

strength, fcd and fyd, are calculated according to equation (7.11) and (7.12). Following 

the recommendation from Chapter 3 the top reinforcement is not introduced in the 

calculation of the sectional stiffness and moment resistance.  

d = 0.15 m 

c1 = 0.05 m b = 1.0 m 

As.w = 6 ϕ 10 

x 

hw = 0.2 m 

 

Figure F.1 Model illustrating the cross section of a wall panel with a width of 1 m. 

 

Table F.1  Additional parameters of the wall panel. 

Part Length of wall panel, w 

[m] 

Reinforcement amount, As.w 

[10
-4

 m
4
] 

Wall 6.0 5.3 

 

Table F.2  Material parameters 

Part Ec 

[GPa] 

fcd 

[MPa] 

Es 

[GPa] 

fyd 

[MPa] 

ρ 

[kg/m
3
] 

Front wall 33 25 200 500 2 400 

 

The factor α, i.e. the ratio between Es and Ec, is calculated according to equation (7.6), 

which for the wall panel is 

066
33

200
.  (F.1) 

The moment of inertia for the uncracked section, state I, without any consideration to 

the reinforcement is calculated as 
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44
33
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a.w.I

 (F.2) 

For a case where the cross section is cracked, state II, and where no axial forces are 

acting on the section, the distance to the neutral axis xII is calculated according to 

equation (7.9). Thus, for the considered section the location of the neutral axis is 

calculated as 

)(0.1510245066
2

20 4

2

II
II x..

x.


   (F.3) 

m0280.xII   (F.4) 

In order to calculate the moment of inertia of the section in state II, equation (7.8) is 

used which for the wall panels becomes 

4424
3

m10540)0280(0.1510245066
3

028020  


 ....
..

I w.II
 (F.5) 

The stiffness for a simply supported wall panel in state II is calculated using 

equation (7.4), resulting in 

kN/m640
65

105401033384
3

49

1 





.
k w.

 (F.6) 

The neutral axis when the ultimate concrete strain is reached (state III) is calculated 

using equation (7.14) where the bottom reinforcement is assumed to reach yielding. 

For the wall panels xIII is calculated as 

m0130
1102580

1050010245
6

64

.
.

.
xIII 








 (F.7) 

Yielding strain, εsy, for reinforcement is calculated according to equation (7.13) and 

for the studied section it is 

3

9

6

1052
10200

10500 



 .sy  (F.8) 

A control of the strain at the bottom reinforcement, εs, is made according to 

equation (7.15) where the ultimate concrete strain, εcu, is 0.0035. 

333 1052108361053
0130

0130150  


 ...
.

..
s  (F.9) 

The moment capacity for the wall, Mrd.w, is calculated according to equation (7.17): 

kNm37.80.013)0.4(0.151013.08.01025 6

. wrdM  (F.10) 

The maximum resistance for a simply supported wall panel with a uniformly 

distributed load, is established using equation (7.10), and calculated as 
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kN450
6

8378
.

.
R w.m 


  (F.11) 

The mass of the wall panel is 

kg28802400062001  ...whbm ww   (F.12) 

 

F.1.2 Front Column 

The cross section of the front column is presented in Figure F.3. Additional 

dimensions and the reinforcement amount are shown in Table F.3 and the material 

parameters can be found in Table F.4. The design values of the concrete and 

reinforcement strength, fcd and fyd, are calculated according to equation (7.11) and 

(7.12). 
 

d = 0.55 m 

c1 = 0.05 m 

bc = 0.5 m 

As,c = 3 ϕ 20 

x 

hc = 0.6 m 

As,c´ = 3 ϕ 20 d´ = 0.05 m 

 

Figure F.2 Model illustrating the cross section of the front column. 

 

Table F.3  Additional parameters of the front column. 

Part Length, L 

[m] 

Reinforcement amount, As,c = As,c´ 

[10
-4

 m
4
] 

Column 7.0 7.8 

 

Table F.4  Material parameters of the front column 

Part Ec 

[GPa] 

fcd 

[MPa] 

Es 

[GPa] 

fyd 

[MPa] 

ρ 

[kg/m
3
] 

Front column 33 25 200 500 2 400 

 

The factor α for the column, calculated according to equation (7.6), is 
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066
33

200
.  (F.13) 

The moment of inertia for state I without consideration to the reinforcement is 

established as 

44
33
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 (F.14) 

For a case where the cross section is cracked, state II, and where no axial forces are 

acting on the section, the distance to the neutral axis xII is calculated according to 

equation (7.9). Thus, for the considered section the location of the neutral axis is 

found as 

In order to calculate the moment of inertia of the section in state II, equation (7.8) is 

used and III.c is calculated as 

4424
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m10011)050(0.0910857066

)90(0.5510857066
3

09050












....

...
..

I c.II  (F.17) 

The stiffness of the column before and after the plastic hinge at the fixed support is 

reached, k1.c and k2.c, respectively, is calculated as 
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The neutral axis when the ultimate concrete strain is reached, in state III, is calculated 

using equation (7.18). Assuming that the bottom reinforcement is yielding and that the 

ultimate concrete strain εcu = 0.0035 the neutral axis, xIII, can be calculated as 

010200
050

0035010857

105001085750801025
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 (F.20) 

m0450.xIII   (F.21) 

A yielding strain for the reinforcement is calculated according to equation (7.13) and 

for the column it is 

)(0.55108570660.05)-(108571)(6.06
2

50 44

2

IIII

II x..x.
x.


   (F.15) 

m090.xII   (F.16) 
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A control of the strain at the top reinforcement, εs´, is made according to 

equation (7.18) as 

333 1052103901053
0450

0450050  


 ...
.

..
´s  (F.23) 

The moment capacity of the front column, Mrd.c, is calculated according to 

equation (7.20). Thus 

The resistance Rms.c, which corresponds to the ultimate resistance at the fixed support, 

and Rmf.c, which corresponds to the ultimate resistance of the critical span section, are 

calculated accordingly 

kN1241
7

21188
.

L

M
R c.rd

c.ms 





  (F.25) 

kN7361
7

2111212
.

L

M
R c.rd

c.mf 





  (F.26) 

The mass of the column including the mass of the wall, used in SDOF and the 2D 

FE analysis, is 

kg2520024000.6)0.576.00.21.0(7 w.cm  (F.27) 

The mass of only the column, used in the 3D FE analysis, is 

kg504024000.60.57 cm  (F.28) 

 

 Plastic deformation capacity of the front column F.2

The calculation of the plastic deformation capacity for the elasto-plastic model of the 

front column in the 3D study is presented in this section. The concept of calculating 

the required deformation capacity for a trilinear model is described in Section E.3.1 

and the hand calculation method is presented in Section A.5. Parameters and 

dimensions of the front column are presented in Section F.1.2 and properties of the 

chosen impulse load can be found in Section 4.3. 

The deformation u1 according to equation (E.35) and Figure E.3 is calculated as 

kNm2110.05)(0.5510200
0.045

0.0450.05
0.0035107.85

0.045)0.4(0.550.50450801025
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



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

..M c.rd

 (F.24) 
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c.ms   (F.29) 

In order to calculate the distance from the simply supported edge to where the 

maximum moment is, L0, the reaction force at the simply supported edge, R1, and the 

equivalent static load, q1, needs to be calculated.  

m

kN
301  cpeak bPq  (F.30) 

 

kN874
2

1
1 .

L

MLq
R c.rd 


  (F.31) 

 

L0 can now be calculated as 

m02
2

1

1
0 .

q

R
LL 


  (F.32) 

 

The shear slenderness λ and the factor for allowed plastic rotation capacity kλ is 

630 .
d

L
  (F.33) 

The plastic rotation capacity, θpl, for reinforcement of Class B and Class C is 

calculated according to Section A.5. For the front column it is calculated as 

The modified values of the plastic rotation capacities, θrd  , can now be calculated as 

The plastic deformation capacities, urd, can now be calculated as 

11
3

.k 


  (F.34) 

rad10510 3 .plB  (F.35) 

rad10732 3 .plC  (F.36) 

rad10511 3 .kplBrdB   (F.37) 

rad10136 3 .kplCrdC   (F.38) 
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The total deformation capacity is the sum of the elastic deformation, where u1 is 

calculated in equation (E.35), and the plastic deformation capacity  

 

 Hand calculations of the dynamic reaction from the F.3

wall 

An approximation of the size of the dynamic reaction is found by using the equivalent 

static load, see Section 2.8. For the elastic and plastic response the equivalent static 

load Q is expressed as 

kel IQ   (F.43) 

pl

k
pl

mu

I
Q

2

2

  (F.44) 

where Ik is the characteristic load, m is the mass, ω is the angular frequency and upl is 

the plastic deformation.  

The equivalent static load provides a value of the maximum deformation of the 

structure and corresponds to the ultimate resistance. For the elastic and elasto-plastic 

response it can be described as 

elel kuQ   (F.45) 

mep RQ   (F.46) 

where 

elepm kuR .  (F.47) 

and where uep,el is the elastic deformation in the elasto-plastic response model 

according to Figure 2.16. 

By applying the equivalent static load on the wall the dynamic reaction is calculated 

for the elastic and elasto-plastic model as 

22

elel
el

kuQ
R   (F.48) 
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R
u rdCrdC    (F.40) 

  mm340mm5118281 ...uuu rdBtot.rdB   (F.41) 

  mm6101mm5111901 ...uuu rdCtot.rdC   (F.42) 
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22

mep

ep

RQ
R   (F.49) 

 

 Verification of the SDOF models F.4

F.4.1 Elastic model 

The accuracy of the SDOF model is verified with the response obtained in a 2D FE 

analysis. For all types of loads the deformation obtained in the SDOF calculations 

agrees with the results from the 2D FE analysis, see Figure F.3 to Figure F.7. A 

simple check of the frequency for the two methods is also done and presented below. 

Parameters of the column can be found in Section F.1.2. 

For the elastic response the angular frequency, ω, of the structure is estimated to be 

rad/s132
805025200

1020967 3

1 .
.m

k

w.c

c. 



  (F.50) 

The frequency and periodicity is established as 

z.
.

f H15
2

1432

2





 (F.51) 

s1950
115

11
.

.f
T   (F.52) 

A frequency of 5.1 corresponds well to the frequency obtained in the 2D FE analysis 

which is 5.09. The accuracy is obvious when comparing the shapes of the deformation 

curves from the SDOF calculations and the FE analysis, shown in 

Figure F.3 to Figure F.7. 
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Figure F.3 The accuracy of the SDOF calculations is verified with results from 

the 2D FE analysis for the Direct load. 

 

Figure F.4 The accuracy of the SDOF calculations is verified with results from 

the 2D FE analysis for Reaction load 1.  
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Figure F.5 The accuracy of the SDOF calculations is verified with the results 

from the 2D FE analysis for Reaction load 2. 

 

 

Figure F.6 The accuracy of the SDOF calculations is verified with the results 

from the 2D FE analysis for Reaction load 3. 
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Figure F.7 The accuracy of the SDOF calculations is verified with the results 

from the 2D FE analysis for Reaction load 4. 

 

F.4.2 Elasto-plastic model 

The response obtained in the SDOF calculations is verified with the response of the 

same structure in the 2D FE analysis, see Figure F.8. It can be noticed that there are 

some divergences between the results from the two methods, both in magnitude and in 

frequency. A possible reason for the differences is the transformations factors applied 

in the SDOF system, which are plastic for the elasto-plastic calculations. Despite the 

fact that the structure is modelled with the elasto-plastic response curve, only the 

plastic transformations factors are used. 
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Figure F.8 The accuracy of the SDOF calculations is verified with the results 

from the 2D FE analysis.  

 

 Support reactions in 3D FE analysis F.5

F.5.1 Elastic response 

The reaction forces transferred from the wall panels to the column during the first 

second are presented in Figure F.10 to Figure F.16. The locations along the column 

are chosen according to Figure 5.45. The reactions are compared to the reaction from 

a simply supported beam with the same dimensions and parameters as the wall. 
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Figure F.9 The deformations and reaction forces are measured at different points 

along the column. 

 

Figure F.10 A comparison of the reaction forces from a simply supported beam and 

the reaction transferred from the wall panel to the column at Point 1.  
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Figure F.11 A comparison of the reaction forces from a simply supported beam and 

the reaction transferred from the wall panel to the column at Point 2. 

 

Figure F.12 A comparison of the reaction forces from a simply supported beam and 

the reaction transferred from the wall panel to the column at Point 3. 
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Figure F.13 A comparison of the reaction forces from a simply supported beam and 

the reaction transferred from the wall panel to the column at Point 4. 

 

Figure F.14 A comparison of the reaction forces from a simply supported beam and 

the reaction transferred from the wall panel to the column at Point 5. 
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Figure F.15 A comparison of the reaction forces from a simply supported beam and 

the reaction transferred from the wall panel to the column at Point 6. 

 

Figure F.16 A comparison of the reaction forces from a simply supported beam and 

the reaction transferred from the wall panel to the column at Point 7. 

 

F.5.2 Elasto-plastic response 

The reactions that are induced at the wall supports and transferred to the column are 

presented in Figure F.17 to Figure F.23. The studied points along the column are 

illustrated in Figure 5.45. The reactions are compared to the reaction from a simply 

supported beam with the same dimensions and parameters as the wall in a frame 

structure.  
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Figure F.17 A comparison of reaction forces from a simply supported beam and the 

reaction transferred from the wall panel to the column at Point 1.  

 

Figure F.18 A comparison of reaction forces from a simply supported beam and the 

reaction transferred from the wall panel to the column at Point 2. 

-50

-30

-10

10

30

50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
ea

ct
io

n
, 

R
 [

k
N

]

Time, t [s]

reaction elplpoint 12

Simply supported beam Wall - Point 1

-50

-30

-10

10

30

50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
ea

ct
io

n
, 

R
 [

k
N

]

Time, t [s]

reaction elplpoint 25

Simply supported beam Wall - Point 2



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 272 

 

Figure F.19 A comparison of reaction forces from a simply supported beam and the 

reaction transferred from the wall panel to the column at Point 3. 

 

Figure F.20 A comparison of reaction forces from a simply supported beam and the 

reaction transferred from the wall panel to the column at Point 4. 
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Figure F.21 A comparison of reaction forces from a simply supported beam and the 

reaction transferred from the wall panel to the column at Point 5. 

 

Figure F.22 A comparison of reaction forces from a simply supported beam and the 

reaction transferred from the wall panel to the column at Point 6. 
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Figure F.23 A comparison of reaction forces from a simply supported beam and the 

reaction transferred from the wall panel to the column at Point 7. 
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APPENDIX G Parametric study of 3D structure 

 Orientation G.1

In this appendix additional graphs are presented for the parametric study of the 3D 

structure where the stiffness and internal resistance is varied for the elastic and elasto-

plastic case, respectively. The results of the case with unchanged stiffness, ku, and 

unchanged internal resistance, Rm.u, are presented calculated according to 

equation (F.6) and (F.11), respectively. 

For the elastic model, two cases of stiffnesses of the wall are considered. The first one 

is stiffness kd which corresponds to the stiffness used in the previous study decreased 

with a factor 4. The second case is stiffness ki which is 4 times larger than ku. The 

values of these parameters can be found in Table 5.16 and Figure 5.55. 

For the elastio-plastic model, two cases of resistance of the wall are considered here 

which corresponds to the resistance from the previous study decreased and increased 

with a factor 2, Rm.d and Rm.i, respectively. The values of these parameters can be 

found in Table 5.18 and Figure 5.71. 

 

 Verification of SDOF model G.2

G.2.1 Elastic response  

G.2.1.1 Decreased stiffness of the wall 

The accuracy of the SDOF model is verified with the response obtained in the 

2D FE analysis, see Figure G.1 to Figure G.4. For all types of loads the deformation 

obtained in the SDOF calculations agrees well with the results from 2D FE analysis.  
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Figure G.1 The accuracy of the SDOF calculations is verified with results from 

the 2D FE analysis for the Direct load. 

 

Figure G.2 The accuracy of the SDOF calculations is verified with results from 

the 2D FE analysis for Reaction load 1. 
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Figure G.3 The accuracy of the SDOF calculations is verified with results from 

the 2D FE analysis for Reaction load 2. 

 

Figure G.4 The accuracy of the SDOF calculations is verified with results from 

the 2D FE analysis for Reaction load 3. 
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G.2.1.2 Increased stiffness of the wall 

The SDOF model is verified with the response obtained in the 2D FE analysis, see 

Figure G.5 to Figure G.8. For all types of loads the deformation obtained in the SDOF 

calculations agrees well with the results from 2D FE analysis. 

 

Figure G.5 The accuracy of the SDOF calculations is verified with results from 

the 2D FE analysis for the Direct load. 

 

Figure G.6 The accuracy of the SDOF calculations is verified with results from 

the 2D FE analysis for Reaction load 1. 
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Figure G.7 The accuracy of the SDOF calculations is verified with results from 

the 2D FE analysis for Reaction load 2. 

 

Figure G.8 The accuracy of the SDOF calculations is verified with results from 

the 2D FE analysis for Reaction load 3.  
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G.2.2 Elasto-plastic response  

G.2.2.1 Decreased internal resistance of the wall 

The SDOF model is verified with the response obtained in the 2D FE analysis, see 

Figure G.9. For all types of loads the deformation obtained in the SDOF calculations 

is simular to the results from the 2D FE analysis. However, the elasto-plastc results do 

not correspond as well as the elastic results. 

 

Figure G.9 The accuracy of the SDOF calculations is verified with the results 

from the 2D FE analysis for the Direct load, Reaction load 5 and 

Reaction load 6. 

 

G.2.2.2 Increased internal resistance of the wall 

The SDOF model is verified with the response obtained in the 2D FE analysis, see 

Figure G.10. For all types of loads the deformation obtained in the SDOF calculations 

is similar to the results from the 2D FE analysis. However, the elasto-plastc results do 

not correspond as well as the elastic.  
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Figure G.10 The accuracy of the SDOF calculations is verified with the results 

from the 2D FE analysis for the Direct load, Reaction load 5 and 

Reaction load 6. 
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Figure G.11 Comparison of the deformation in the middle of the column obtained 

in the 3D FE analysis and in the SDOF analysis for the Direct load.  

 

Figure G.12 Comparison of the deformation in the middle of the column obtained 

in the 3D FE analysis and in the SDOF calculations for 

Reaction load 1.  
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Figure G.13 Comparison of the deformation in the middle of the column obtained 

in the 3D FE analysis and in the SDOF calculations for Reaction 

load 2. 

 

Figure G.14 Comparison of the deformation in the middle of the column obtained 

in the 3D FE analysis and in the SDOF calculations for Reaction 

load 3. 
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G.3.1.2 Increased stiffness of the wall 

The deformation of the column for the different loads in the SDOF calculations is 

compared to the deformations of the 3D FE model.  

 

Figure G.15 Comparison of the deformation in the middle of the column obtained 

in the 3D FE analysis and in the SDOF analysis for the Direct load. 

  

Figure G.16 Comparison of the deformation in the middle of the column obtained 

in the 3D FE analysis and in the SDOF calculations for Reaction 
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Figure G.17 Comparison of the deformation in the middle of the column obtained 

in the 3D FE analysis and in the SDOF calculations for Reaction 

load 2. 

 

Figure G.18 Comparison of the deformation in the middle of the column obtained 

in the 3D FE analysis and in the SDOF calculations for Reaction 

load 3.  
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G.3.2 Elasto-plastic response  

G.3.2.1 Decreased internal resistance of the wall 

The deformation of the column for the different loads in the SDOF calculations is 

compared to the deformation of the 3D FE model, see Figure G.19 to Figure G.20.  

 

Figure G.19 Comparison of the deformation in the middle of the column obtained 

in the 3D FE analysis and in the SDOF analysis for the Direct load.  

 

Figure G.20 Comparison of the deformation in the middle of the column obtained 

in the 3D FE analysis and in the SDOF analysis for Reaction load 5 

and 6.  
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G.3.2.2 Increased internal resistance of the wall 

The deformation of the column for the different SDOF loads are compared to the 

deformation of the 3D FE model, see Figure G.21 to Figure G.22.  

 

Figure G.21 Comparison of the deformation in the middle of the column obtained 

in the 3D FE analysis and in the SDOF analysis for the Direct load.  

 

Figure G.22 Comparison of the deformation in the middle of the column obtained 

in the 3D FE analysis and in the SDOF analysis for Reaction load 5 

and 6.  
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 Reaction loads G.4

G.4.1 Elastic response 

G.4.1.1 Decreased stiffness of the wall 

The reaction forces in the different points along the column are compared to a simply 

supported beam, see Figure G.23 to Figure G.29.  

 

Figure G.23 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 1. 
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Figure G.24 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 2. 

 

Figure G.25 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 3. 
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Figure G.26 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 4. 

 

Figure G.27 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 5. 
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Figure G.28 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 6.  

 

Figure G.29 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 7. 

 

G.4.1.2 Increased stiffness of the wall 

The reaction forces in the different points along the column are compared to a simply 
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Figure G.30 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 1.   

 

Figure G.31 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 2. 
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Figure G.32 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 3. 

 

Figure G.33 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 4. 
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Figure G.34 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 5.   

 

Figure G.35 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 6. 
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Figure G.36 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 7. 

 

G.4.2 Elasto-plastic response 

G.4.2.1 Decreased internal resistance of the wall 

The reaction forces in the different points along the column are compared to a simply 

supported beam in Figure G.37 to Figure G.43. 

  

-100

-75

-50

-25

0

25

50

75

100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
ea

ct
io

n
, 

R
 [

k
N

]

Time, t [s]

reaction el point 145

Simply supported beam Wall - Point 7



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:87 296 

 

Figure G.37 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 1.   

 

Figure G.38 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 2. 
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Figure G.39 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 3.   

 

Figure G.40 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 4.   
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Figure G.41 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 5.   

 

Figure G.42 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 6.   
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Figure G.43 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 7.   

 

G.4.2.2 Increased internal resistance of the wall 

The reaction forces in the different points along the column are compared to a simply 

supported beam in Figure G.44 to Figure G.50. 

 

Figure G.44 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 1. 
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Figure G.45 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 2.   

 

Figure G.46 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 3. 
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Figure G.47 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 4.    

 

Figure G.48 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 5.   
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Figure G.49 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 6.    

 

Figure G.50 A comparison of the reaction forces from a simply supported beam and 

the reaction forces transferred from the wall panel to the column in 

point 7.    
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 Comparison of delayed load in SDOF and 3D FE G.5

analysis 

G.5.1 Elastic response 

G.5.1.1 Decreased stiffness of the wall 

In the 3D FE analysis the delayed load is calculated as the sum of all support reactions 

acting on the column. Here, it is compared to the total delayed load simulated in 

SDOF in Figure G.51. 

 

Figure G.51 A comparison of the delayed load in SDOF and in the 3D FE analysis. 

 

G.5.1.2 Increased stiffness of the wall 

In the 3D FE analysis the delayed load is calculated as the sum of all support reactions 

acting on the column. Here, it is compared to the total delayed load simulated in 

SDOF in Figure G.52. 
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Figure G.52 A comparison of the delayed loading in SDOF and in the 3D FE 

analysis. 

 

G.5.2 Elasto-plastic response 

G.5.2.1 Decreased internal resistance of the wall 

In the 3D FE analysis the delayed load is calculated as the sum of all support reactions 

acting on the column. Here, it is compared to the total delayed load simulated in 

SDOF in Figure G.53. 

 

Figure G.53 A comparison of the delayed loading in SDOF and in the 3D FE 

analysis. 
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G.5.2.2 Increased internal resistance of the wall 

In the 3D FE analysis the delayed load is calculated as the sum of all support reactions 

acting on the column. Here, it is compared to the total delayed load simulated in 

SDOF in Figure G.54. 

 

Figure G.54 A comparison of the delayed loading in SDOF and in the 3D FE 

analysis. 
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APPENDIX H Indata files for ADINA 

 2D Frame with elasto-plastic material model H.1

DATABASE NEW SAVE=NO PROMPT=NO 

FEPROGRAM ADINA 

CONTROL FILEVERSION=V88 

 

*************************** ANALYSIS TYPE ************************* 

 

MASTER’S ANALYSIS=DYNAMIC-DIRECT-INTEGRATION MODEX=EXECUTE, 

TSTART=0 IDOF=1110 OVALIZAT=NONE, 

FLUIDPOT=AUTOMATIC CYCLICPA=1 IPOSIT=STOP REACTION=YES, 

INITIALS=NO FSINTERA=NO IRINT=DEFAULT CMASS=NO, 

SHELLNDO=AUTOMATIC AUTOMATI=OFF SOLVER=SPARSE, 

CONTACT-=CONSTRAINT-FUNCTION TRELEASE=0, 

RESTART-=NO FRACTURE=NO LOAD-CAS=NO LOAD-PEN=NO SINGULAR=YES, 

STIFFNES=0.0001 MAP-OUTP=NONE MAP-FORM=NO, 

NODAL-DE='' POROUS-C=NO ADAPTIVE=0 ZOOM-LAB=1 AXIS-CYC=0, 

PERIODIC=NO VECTOR-S=GEOMETRY EPSI-FIR=NO STABILIZ=NO, 

STABFACT=1E-10 RESULTS=PORTHOLE FEFCORR=NO, 

BOLTSTEP=1 EXTEND-S=YES CONVERT-=NO DEGEN=YES TMC-MODE=NO, 

ENSIGHT-=NO IRSTEPS=1 INITIALT=NO TEMP-INT=NO ESINTERA=NO, 

OP2GEOM=NO 

* 

ANALYSIS DYNAMIC-DIRECT-INTEGRATION METHOD=NEWMARK, 

DELTA=0.5     ALPHA=0.25, 

THETA=1.4     TIMESTEP=TOTALTIME NCRSTEP=1, 

CRSTEP=0      MASS-SCA=1, 

DTMIN1=0      DTMIN2=0, 

GAMMA=0.5 

 

****************************** GEOMETRY *************************** 

 

COORDINATES POINT SYSTEM=0 

@CLEAR 

1 0      0         0      0 

2 0      7         0      0 

3 0      7.01    0      0 

4 15     7.01   0      0 

5 15     7        0      0 

6 15     0        0      0 

7 0       8        0      0 

8 16     0        0      0 

@ 

* 

LINE STRAIGHT NAME=1 P1=1 P2=2 

LINE STRAIGHT NAME=2 P1=3 P2=4 

LINE STRAIGHT NAME=3 P1=5 P2=6 

* 

CROSS-SECTIO RECTANGULAR NAME=1 WIDTH=0.2, 

HEIGHT=1      SC=0                        TC=0, 

TORFAC=1     SSHEARF=0, 

TSHEARF=0    ISHEAR=NO          SQUARE=NO 

 

***************************** MATERIAL***************************** 

 

MATERIAL PLASTIC-BILINEAR NAME=1 HARDENIN=ISOTROPIC, 

E=2.7001E+09                                              NU=0, 

YIELD=5684900     ET=100                        EPA=0, 
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STRAINRA=0         DENSITY=2400          ALPHA=0, 

TREF=0                    DEPENDEN=NO       TRANSITI=0.0001, 

EP-STRAI=0            BCURVE=0                BVALUE=0, 

XM-INF=0               XM0=0, 

ETA=0                      MDESCRIP='NONE' 

 

*********************** BOUNDARY CONDITIONS ********************* 

 

FIXBOUNDARY POINTS FIXITY=ALL 

@CLEAR 

1  'ALL' 

6  'ALL' 

@ 

* 

RIGIDLINK NAME=1 SLAVETYP=POINT SLAVENAM=2 MASTER’STY=POINT 

MASTER’SNA=3, 

DISPLACE=DEFAULT OPTION=0 SLAVEBOD=0 MASTER’SBO=0 DOF=ALL, 

DOFSI=123 

* 

RIGIDLINK NAME=2 SLAVETYP=POINT SLAVENAM=4 MASTER’STY=POINT 

MASTER’SNA=5, 

DISPLACE=DEFAULT OPTION=0 SLAVEBOD=0 MASTER’SBO=0 DOF=ALL, 

DOFSI=123 

* 

RIGIDLINK NAME=1 SLAVETYP=POINT SLAVENAM=3 MASTER’STY=POINT 

MASTER’SNA=2, 

DISPLACE=DEFAULT OPTION=0 SLAVEBOD=0 MASTER’SBO=0 DOF=ALL, 

DOFSI=123 

 

**************************** ELEMENTS ***************************** 

 

SUBDIVIDE MODEL MODE=DIVISIONS SIZE=0 NDIV=30, 

PROGRESS=GEOMETRIC MINCUR=1 

* 

EGROUP BEAM NAME=1 SUBTYPE=TWO-D DISPLACE=DEFAULT MATERIAL=1 RINT=5, 

SINT=3 TINT=DEFAULT RESULTS=STRESSES INITIALS=NONE CMASS=DEFAULT, 

RIGIDEND=NONE MOMENT-C=NO RIGIDITY=0 MULTIPLY=1000000, 

RUPTURE=ADINA OPTION=NONE BOLT-TOL=0 DESCRIPT=, 

'NONE' SECTION=1 PRINT=DEFAULT SAVE=DEFAULT TBIRTH=0, 

TDEATH=0 SPOINT=4 BOLTFORC=0, 

BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-LOA=0, 

WARP=NO 

* 

GLINE NODES=2 AUXPOINT=8 NCOINCID=ENDS NCENDS=12, 

NCTOLERA=1E-05 SUBSTRUC=0 GROUP=1 MIDNODES=CURVED, 

XO=0 YO=0 ZO=0, 

XYZOSYST=SKEW 

@CLEAR 

1 

3 

@ 

* 

EGROUP BEAM NAME=2 SUBTYPE=TWO-D DISPLACE=DEFAULT MATERIAL=1 RINT=5, 

SINT=3 TINT=DEFAULT RESULTS=STRESSES INITIALS=NONE CMASS=DEFAULT, 

RIGIDEND=NONE MOMENT-C=NO RIGIDITY=0 MULTIPLY=1000000, 

RUPTURE=ADINA OPTION=NONE BOLT-TOL=0 DESCRIPT=, 

'NONE' SECTION=1 PRINT=DEFAULT SAVE=DEFAULT TBIRTH=0, 

TDEATH=0 SPOINT=4 BOLTFORC=0, 

BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-LOA=0, 

WARP=NO 
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* 

GLINE NODES=2 AUXPOINT=7 NCOINCID=ENDS NCENDS=12, 

NCTOLERA=1E-05 SUBSTRUC=0 GROUP=2 MIDNODES=CURVED, 

XO=0 YO=0 ZO=0, 

XYZOSYST=SKEW 

@CLEAR 

2 

@ 

 

************************** DYNAMIC LOAD ************************** 

 

LOAD LINE NAME=1 MAGNITUD=-60000 

* 

APPLY-LOAD BODY=0 

@CLEAR 

1  'LINE' 1  'LINE' 1 0 1 0 0 -1 8 0 0  'NO', 

0 0 1 0  'MID' 

@ 

* 

TIMEFUNCTION NAME=1 IFLIB=1 FPAR1=0, 

FPAR2=0                FPAR3=0, 

FPAR4=0                FPAR5=0, 

FPAR6=0 

@CLEAR 

0               0 

0.00025    1 

0.025        0 

2               0 

@ 

* 

TIMESTEP NAME=LOAD 

@CLEAR 

8000 0.00025 

@ 

 

 3D Frame with elasto-plastic material model H.2

DATABASE NEW SAVE=NO PROMPT=NO 

FEPROGRAM ADINA 

CONTROL FILEVERSION=V88 

* 

FEPROGRAM PROGRAM=ADINA 

* 

*************************** ANALYSIS TYPE ************************* 

* 

MASTER’S ANALYSIS=DYNAMIC-DIRECT-INTEGRATION MODEX=EXECUTE, 

TSTART=0 IDOF=0 OVALIZAT=NONE FLUIDPOT=AUTOMATIC, 

CYCLICPA=1 IPOSIT=STOP REACTION=YES INITIALS=NO FSINTERA=NO, 

IRINT=DEFAULT CMASS=NO SHELLNDO=AUTOMATIC AUTOMATI=OFF, 

SOLVER=SPARSE CONTACT-=CONSTRAINT-FUNCTION, 

TRELEASE=0.00000000000000 RESTART-=NO FRACTURE=NO LOAD-CAS=NO, 

LOAD-PEN=NO SINGULAR=YES STIFFNES=0.000100000000000000, 

MAP-OUTP=NONE MAP-FORM=NO NODAL-DE='' POROUS-C=NO ADAPTIVE=0, 

ZOOM-LAB=1 AXIS-CYC=0 PERIODIC=NO VECTOR-S=GEOMETRY EPSI-FIR=NO, 

STABILIZ=NO STABFACT=1.00000000000000E-10 RESULTS=PORTHOLE, 

FEFCORR=NO BOLTSTEP=1 EXTEND-S=YES CONVERT-=NO DEGEN=YES, 

TMC-MODE=NO ENSIGHT-=NO IRSTEPS=1 INITIALT=NO TEMP-INT=NO, 

ESINTERA=NO OP2GEOM=NO 

* 

ANALYSIS DYNAMIC-DIRECT-INTEGRATION METHOD=NEWMARK, 
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DELTA=0.5        ALPHA=0.25, 

THETA=1.4        TIMESTEP=TOTALTIME NCRSTEP=1, 

CRSTEP=0           MASS-SCA=1, 

DTMIN1=0          DTMIN2=0, 

GAMMA=0.5 

 

****************************** GEOMETRY *************************** 

 

COORDINATES POINT SYSTEM=0 

@CLEAR 

1 0         0        0        0 

2 7         0        0        0 

3 0         1        0        0 

4 0.5      0        0.01   0 

5 0.5       0        3        0 

6 0.5       0       -3        0 

7 0.5       0       -0.01   0 

9 0          0        3        0 

10 0.5     1        3        0 

11 0.25    0        0        0 

12 0.5      0        0        0 

13 0.75    0        0        0 

14 1         0        0        0 

15 1.25    0        0        0 

16 1.5      0        0        0 

17 1.75    0        0        0 

18 2         0        0        0 

19 2.25     0        0        0 

20 2.5       0        0        0 

21 2.75     0        0        0 

22 3          0        0        0 

23 3.25     0        0        0 

24 3.5       0        0        0 

25 3.75     0        0        0 

26 4          0        0        0 

27 4.25    0        0        0    

28 4.5      0        0        0 

29 4.75    0        0        0 

30 5         0        0        0 

31 5.25    0        0        0 

32 5.5      0        0        0 

33 5.75    0        0        0 

34 6         0        0        0 

35 6.25    0        0        0 

36 6.5      0        0        0 

37 6.75    0        0        0 

38 7         0        0        0 

39 1.5      0        0.01   0 

40 1.5      0        3        0 

41 1.5      0        -0.01  0 

42 1.5      0        -3       0 

43 2.5      0        0.01   0 

44 2.5      0        3        0 

45 2.5      0        -0.01 0 

46 2.5      0        -3       0 

47 3.5      0        0.01   0 

48 3.5      0        3        0 

49 3.5      0        -0.01  0 

50 3.5      0        -3       0 

51 4.5      0        0.01   0 
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52 4.5      0        3        0 

53 4.5      0        -0.01  0 

54 4.5      0        -3       0 

55 5.5      0        0.01   0 

56 5.5      0        3        0 

57 5.5      0        -0.01  0 

58 5.5      0        -3       0 

59 6.5      0        0.01   0 

60 6.5      0        3        0 

61 6.5      0        -0.01  0 

62 6.5      0        -3       0 

63 1.5      1        3        0 

64 2.5      1        3        0 

65 3.5      1        3        0 

66 4.5      1        3        0 

67 5.5      1        3        0 

68 6.5      1        3        0 

@ 

* 

LINE STRAIGHT NAME=1 P1=1 P2=2 

* 

LINE STRAIGHT NAME=2 P1=5 P2=4 

* 

LINE STRAIGHT NAME=3 P1=7 P2=6 

* 

LINE STRAIGHT NAME=4 P1=39 P2=40 

* 

LINE STRAIGHT NAME=5 P1=41 P2=42 

* 

LINE STRAIGHT NAME=6 P1=43 P2=44 

* 

LINE STRAIGHT NAME=7 P1=45 P2=46 

* 

LINE STRAIGHT NAME=8 P1=47 P2=48 

* 

LINE STRAIGHT NAME=9 P1=49 P2=50 

* 

LINE STRAIGHT NAME=10 P1=51 P2=52 

* 

LINE STRAIGHT NAME=11 P1=53 P2=54 

* 

LINE STRAIGHT NAME=12 P1=55 P2=56 

* 

LINE STRAIGHT NAME=13 P1=57 P2=58 

* 

LINE STRAIGHT NAME=14 P1=59 P2=60 

* 

LINE STRAIGHT NAME=15 P1=61 P2=62 

* 

CROSS-SECTIO RECTANGULAR NAME=1 WIDTH=0.6, 

HEIGHT=0.5     SC=0                  TC=0, 

TORFAC=1       SSHEARF=0, 

TSHEARF=0     ISHEAR=NO     SQUARE=NO 

* 

CROSS-SECTIO RECTANGULAR NAME=2 WIDTH=1, 

HEIGHT=0.2     SC=0                   TC=0, 

TORFAC=1       SSHEARF=0, 

TSHEARF=0      ISHEAR=NO     SQUARE=NO 
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***************************** MATERIAL***************************** 

 

MATERIAL PLASTIC-BILINEAR NAME=1 HARDENIN=ISOTROPIC, 

E=2.7001E+09 NU=0, 

YIELD=4101600 ET=100  EPA=0, 

STRAINRA=0 DENSITY=2400 ALPHA=0, 

TREF=0 DEPENDEN=NO TRANSITI=0.0001, 

EP-STRAI=0 BCURVE=0 BVALUE=0, 

XM-INF=0 XM0=0, 

ETA=0 MDESCRIP='wall' 

* 

MATERIAL PLASTIC-BILINEAR NAME=2 HARDENIN=ISOTROPIC, 

E=4.1619E+09 NU=0, 

YIELD=5069100 ET=100 EPA=0, 

STRAINRA=0 DENSITY=2400 ALPHA=0, 

TREF=0 DEPENDEN=NO TRANSITI=0.0001, 

EP-STRAI=0 BCURVE=0 BVALUE=0, 

XM-INF=0 XM0=0, 

ETA=0 MDESCRIP='column' 

 

*********************** BOUNDARY CONDITIONS ********************* 

 

FIXITY NAME=2 

@CLEAR 

 'Y-TRANSLATION' 

 'OVALIZATION' 

@ 

* 

FIXITY NAME=5 

@CLEAR 

 'X-TRANSLATION' 

 'Z-TRANSLATION' 

 'X-ROTATION' 

 'Y-ROTATION' 

 'Z-ROTATION' 

 'OVALIZATION' 

@ 

* 

FIXBOUNDARY POINTS FIXITY=ALL 

@CLEAR 

1    'ALL' 

2    '2' 

5    '5' 

6    '5' 

40  '5' 

44  '5' 

48  '5' 

52  '5' 

56  '5' 

60  '5' 

62  '5' 

58  '5' 

54  '5' 

50  '5' 

46  '5' 

42  '5' 

@ 

* 

RIGIDLINK NAME=1 SLAVETYP=POINT SLAVENAM=4 MASTER’STY=POINT 

MASTER’SNA=12, 
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DISPLACE=DEFAULT OPTION=0 SLAVEBOD=0 MASTER’SBO=0 DOF=ALL, 

DOFSI=123 

* 

RIGIDLINK NAME=2 SLAVETYP=POINT SLAVENAM=7 MASTER’STY=POINT 

MASTER’SNA=12, 

DISPLACE=DEFAULT OPTION=0 SLAVEBOD=0 MASTER’SBO=0 DOF=ALL, 

DOFSI=123 

* 

RIGIDLINK NAME=3 SLAVETYP=POINT SLAVENAM=41 MASTER’STY=POINT, 

MASTER’SNA=16 DISPLACE=DEFAULT OPTION=0 SLAVEBOD=0 MASTER’SBO=0, 

DOF=ALL DOFSI=123 

* 

RIGIDLINK NAME=4 SLAVETYP=POINT SLAVENAM=39 MASTER’STY=POINT, 

MASTER’SNA=16 DISPLACE=DEFAULT OPTION=0 SLAVEBOD=0 MASTER’SBO=0, 

DOF=ALL DOFSI=123 

* 

RIGIDLINK NAME=5 SLAVETYP=POINT SLAVENAM=43 MASTER’STY=POINT, 

MASTER’SNA=20 DISPLACE=DEFAULT OPTION=0 SLAVEBOD=0 MASTER’SBO=0, 

DOF=ALL DOFSI=123 

* 

RIGIDLINK NAME=6 SLAVETYP=POINT SLAVENAM=45 MASTER’STY=POINT, 

MASTER’SNA=20 DISPLACE=DEFAULT OPTION=0 SLAVEBOD=0 MASTER’SBO=0, 

DOF=ALL DOFSI=123 

* 

RIGIDLINK NAME=7 SLAVETYP=POINT SLAVENAM=47 MASTER’STY=POINT, 

MASTER’SNA=24 DISPLACE=DEFAULT OPTION=0 SLAVEBOD=0 MASTER’SBO=0, 

DOF=ALL DOFSI=123 

* 

RIGIDLINK NAME=8 SLAVETYP=POINT SLAVENAM=49 MASTER’STY=POINT, 

MASTER’SNA=24 DISPLACE=DEFAULT OPTION=0 SLAVEBOD=0 MASTER’SBO=0, 

DOF=ALL DOFSI=123 

* 

RIGIDLINK NAME=9 SLAVETYP=POINT SLAVENAM=51 MASTER’STY=POINT, 

MASTER’SNA=28 DISPLACE=DEFAULT OPTION=0 SLAVEBOD=0 MASTER’SBO=0, 

DOF=ALL DOFSI=123 

* 

RIGIDLINK NAME=10 SLAVETYP=POINT SLAVENAM=53 MASTER’STY=POINT, 

MASTER’SNA=28 DISPLACE=DEFAULT OPTION=0 SLAVEBOD=0 MASTER’SBO=0, 

DOF=ALL DOFSI=123 

* 

RIGIDLINK NAME=11 SLAVETYP=POINT SLAVENAM=55 MASTER’STY=POINT, 

MASTER’SNA=32 DISPLACE=DEFAULT OPTION=0 SLAVEBOD=0 MASTER’SBO=0, 

DOF=ALL DOFSI=123 

* 

RIGIDLINK NAME=12 SLAVETYP=POINT SLAVENAM=57 MASTER’STY=POINT, 

MASTER’SNA=32 DISPLACE=DEFAULT OPTION=0 SLAVEBOD=0 MASTER’SBO=0, 

DOF=ALL DOFSI=123 

* 

RIGIDLINK NAME=13 SLAVETYP=POINT SLAVENAM=59 MASTER’STY=POINT, 

MASTER’SNA=36 DISPLACE=DEFAULT OPTION=0 SLAVEBOD=0 MASTER’SBO=0, 

DOF=ALL DOFSI=123 

* 

RIGIDLINK NAME=14 SLAVETYP=POINT SLAVENAM=61 MASTER’STY=POINT, 

MASTER’SNA=36 DISPLACE=DEFAULT OPTION=0 SLAVEBOD=0 MASTER’SBO=0, 

DOF=ALL DOFSI=123 

 

**************************** ELEMENTS ***************************** 

 

EGROUP BEAM NAME=1 SUBTYPE=THREE-D DISPLACE=DEFAULT MATERIAL=2 RINT=5, 

SINT=DEFAULT TINT=DEFAULT RESULTS=FORCES INITIALS=NONE, 
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CMASS=DEFAULT RIGIDEND=NONE MOMENT-C=NO RIGIDITY=0, 

MULTIPLY=1000000 RUPTURE=ADINA OPTION=NONE, 

BOLT-TOL=0 DESCRIPT='column' SECTION=1, 

PRINT=DEFAULT SAVE=DEFAULT TBIRTH=0, 

TDEATH=0 SPOINT=4 BOLTFORC=0, 

BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-LOA=0, 

WARP=NO 

* 

EGROUP BEAM NAME=2 SUBTYPE=THREE-D DISPLACE=DEFAULT MATERIAL=1 RINT=5, 

SINT=DEFAULT TINT=DEFAULT RESULTS=FORCES INITIALS=NONE, 

CMASS=DEFAULT RIGIDEND=NONE MOMENT-C=NO RIGIDITY=0, 

MULTIPLY=1000000 RUPTURE=ADINA OPTION=NONE, 

BOLT-TOL=0 DESCRIPT='wall' SECTION=2, 

PRINT=DEFAULT SAVE=DEFAULT TBIRTH=0, 

TDEATH=0 SPOINT=4 BOLTFORC=0, 

BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-LOA=0, 

WARP=NO 

* 

SUBDIVIDE LINE NAME=1 MODE=LENGTH SIZE=0.25 

* 

GLINE NODES=2 AUXPOINT=3 NCOINCID=ENDS NCENDS=12, 

NCTOLERA=1E-05 SUBSTRUC=0 GROUP=1 MIDNODES=CURVED, 

XO=0 YO=0 ZO=0, 

XYZOSYST=SKEW 

@CLEAR 

1 

@ 

* 

SUBDIVIDE LINE NAME=2 MODE=DIVISIONS NDIV=12 RATIO=1, 

PROGRESS=GEOMETRIC CBIAS=NO 

* 

SUBDIVIDE LINE NAME=3 MODE=DIVISIONS NDIV=12 RATIO=1, 

PROGRESS=GEOMETRIC CBIAS=NO 

* 

SUBDIVIDE LINE NAME=4 MODE=DIVISIONS NDIV=12 RATIO=1, 

PROGRESS=GEOMETRIC CBIAS=NO 

* 

SUBDIVIDE LINE NAME=5 MODE=DIVISIONS NDIV=12 RATIO=1, 

PROGRESS=GEOMETRIC CBIAS=NO 

* 

SUBDIVIDE LINE NAME=6 MODE=DIVISIONS NDIV=12 RATIO=1, 

PROGRESS=GEOMETRIC CBIAS=NO 

* 

SUBDIVIDE LINE NAME=7 MODE=DIVISIONS NDIV=12 RATIO=1, 

PROGRESS=GEOMETRIC CBIAS=NO 

* 

SUBDIVIDE LINE NAME=8 MODE=DIVISIONS NDIV=12 RATIO=1, 

PROGRESS=GEOMETRIC CBIAS=NO 

* 

SUBDIVIDE LINE NAME=9 MODE=DIVISIONS NDIV=12 RATIO=1, 

PROGRESS=GEOMETRIC CBIAS=NO 

* 

SUBDIVIDE LINE NAME=10 MODE=DIVISIONS NDIV=12 RATIO=1, 

PROGRESS=GEOMETRIC CBIAS=NO 

* 

SUBDIVIDE LINE NAME=11 MODE=DIVISIONS NDIV=12 RATIO=1, 

PROGRESS=GEOMETRIC CBIAS=NO 

* 

SUBDIVIDE LINE NAME=12 MODE=DIVISIONS NDIV=12 RATIO=1, 

PROGRESS=GEOMETRIC CBIAS=NO 
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* 

SUBDIVIDE LINE NAME=13 MODE=DIVISIONS NDIV=12 RATIO=1, 

PROGRESS=GEOMETRIC CBIAS=NO 

* 

SUBDIVIDE LINE NAME=14 MODE=DIVISIONS NDIV=12 RATIO=1, 

PROGRESS=GEOMETRIC CBIAS=NO 

* 

SUBDIVIDE LINE NAME=15 MODE=DIVISIONS NDIV=12 RATIO=1, 

PROGRESS=GEOMETRIC CBIAS=NO 

* 

GLINE NODES=2 AUXPOINT=9 NCOINCID=ENDS NCENDS=12, 

NCTOLERA=1E-05 SUBSTRUC=0 GROUP=2 MIDNODES=CURVED, 

XO=0 YO=0 ZO=0, 

XYZOSYST=SKEW 

@CLEAR 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

@ 

 

************************** DYNAMIC LOAD ************************** 

 

LOAD LINE NAME=1 MAGNITUD=-60000.0000000000 

* 

APPLY-LOAD BODY=0 

@CLEAR 

1  'LINE' 1  'LINE' 3 0 1 0 0 -1 10 0 0  'NO', 

0 0 1 0  'MID' 

2  'LINE' 1  'LINE' 2 0 1 0 0 -1 10 0 0  'NO', 

0 0 1 0  'MID' 

3  'LINE' 1  'LINE' 4 0 1 0 0 -1 63 0 0  'NO', 

0 0 1 0  'MID' 

4  'LINE' 1  'LINE' 5 0 1 0 0 -1 63 0 0  'NO', 

0 0 1 0  'MID' 

5  'LINE' 1  'LINE' 6 0 1 0 0 -1 64 0 0  'NO', 

0 0 1 0  'MID' 

6  'LINE' 1  'LINE' 7 0 1 0 0 -1 64 0 0  'NO', 

0 0 1 0  'MID' 

7  'LINE' 1  'LINE' 8 0 1 0 0 -1 65 0 0  'NO', 

0 0 1 0  'MID' 

8  'LINE' 1  'LINE' 9 0 1 0 0 -1 65 0 0  'NO', 

0 0 1 0  'MID' 

9  'LINE' 1  'LINE' 10 0 1 0 0 -1 66 0 0  'NO', 

0 0 1 0  'MID' 

10  'LINE' 1  'LINE' 11 0 1 0 0 -1 66 0 0  'NO', 

0 0 1 0  'MID' 

11  'LINE' 1  'LINE' 12 0 1 0 0 -1 67 0 0  'NO', 

0 0 1 0  'MID' 

12  'LINE' 1  'LINE' 13 0 1 0 0 -1 67 0 0  'NO', 
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0 0 1 0  'MID' 

13  'LINE' 1  'LINE' 14 0 1 0 0 -1 68 0 0  'NO', 

0 0 1 0  'MID' 

14  'LINE' 1  'LINE' 15 0 1 0 0 -1 68 0 0  'NO', 

0 0 1 0  'MID' 

@ 

* 

TIMEFUNCTION NAME=1 IFLIB=1 FPAR1=0, 

FPAR2=0 FPAR3=0, 

FPAR4=0 FPAR5=0, 

FPAR6=0 

@CLEAR 

0               0 

0.00025    1 

0.025        0 

2               0 

@ 

* 

TIMESTEP NAME=LOAD 

@CLEAR 

8000 0.00025 

@ 

* 

 


