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ABSTRACT 

During collisions between a moving object and a resisting structure, an impact load is 
obtained which can act very different from a static load. Examples of such collisions 
are when a structure is exposed to a vehicle crash, or if a strong wind throws an object 
at it. These scenarios will create a dynamic response which can be of great importance 
for the behaviour of the structure. The methods that regard collision impact in 
Eurocode are very simplified and further studies of the subject are needed. Therefore, 
the purpose of this master’s thesis is to evaluate how the design with regard to 
collision impact between an incoming object and a reinforced concrete member, can 
be carried out using both advanced and simplified methods. This thesis compares 
impact loaded finite element (FE) models, with two degree of freedom (2DOF) mass-
spring systems. The resisting structure and the incoming object are simplified to have 
either an elastic behaviour, or an elastic and plastic (elasto-plastic) bilinear behaviour. 
The structures studied are mainly simply supported quadratic slabs. 

Basic theory of dynamics and collision impact is described and a parametric study of 
collisions using 2DOF is performed for the understanding of basic principles of 
collision impact. It is described how beams and slabs can be transformed into a mass 
and a spring, so it can be used in the 2DOF, in addition it is also described how the 
used FE models are built. 

When modelling a slab with FE software in this thesis, the target was first to use a 
grid of beams (beam grillage), which in turn are made of 3D beam elements. 
However, it appears that the beam grillage has the wrong behaviour when acting 
plastically compared to both theory and alternative FE models made of shell elements. 
So for slabs with elasto-plastic behaviour, shell elements are used instead. It is shown 
that the 2DOF and FE models correspond well for beams, particularly when the 
collision impact is in the centre of the beam and especially for elastic beams. For 
elastic slabs, 2DOF and FE models correspond quite well but less so when the impact 
is far from the centre. For elasto-plastic slabs however, the correspondence is not so 
good, but a corresponding maximum displacement can be found between the 2DOF 
and FE. It is believed that the 2DOF model can be improved in several ways, which 
are discussed, to be able to fully describe the elasto-plastic behaviour of a simply 
supported reinforced concrete slab. 

Key words: Collision impact, impulse load, 2DOF, FEM, dynamic response, 
transformation factor, beam grillage, elasto-plastic 
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Dimensionering med hänsyn till kollisionsstöt 
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JOHAN ANTONSSON 

Institutionen för bygg- och miljöteknik 

Avdelningen för konstruktionsteknik 

Betongbyggnad 

Chalmers tekniska högskola 

 

SAMMANFATTNING 

Vid kollisioner mellan en kropp i rörelse och en mothållande konstruktion så kommer 
en stötlast att skapas som kan agera mycket olikt en statisk last. Exempel på sådana 
kollisioner är när en konstruktion blir påkört av ett fordon, eller om en stark vind får 
ett objekt att flyga in i den från sidan. Dessa scenarier kommer att skapa en dynamisk 
respons som kan spela en stor roll i beteendet av konstruktionen. Eurocode behandlar 
kollisionsstötar med mycket förenklade metoder och mer fördjupade studier av ämnet 
behövs. Därför är syftet med detta examensarbete att undersöka hur dimensionering 
med hänsyn till kollisionsstöt, mellan ett inkommande objekt och en armerad 
betongstruktur, kan utföras med både avancerade och förenklade beräkningsmetoder. 
Denna rapport jämför stötbelastade finita element- (FE) modeller, med två 
frihetsgraders (2DOF) massa-fjäder-system. Den mothållande konstruktionens och det 
inkommande objektet är förenklat till att ha antingen ett elastiskt beteende, eller ett 
elastiskt och plastiskt (elastoplastiskt) bilinjärt beteende. Det som studeras främst i 
den här rapporten är kollisionsstöt på fritt upplagda kvadratiska betongplattor. 

Grundläggande teori om dynamik och kollisionsstötar beskrivs och en parameter-
studie av kollisioner med hjälp av 2DOF genomförs för att skapa en grundläggande 
förståelse av kollisionsstöt. Det är också beskrivit hur balkar och plattor kan bli 
transformerade till en massa och en fjäder för användning i 2DOF, och hur de 
använda FE-modellerna är uppbyggda. 

Det var meningen att FE-modellerna av plattor, skulle byggas upp med ett rutnät av 
balkar (balkrost), utgjorda av tredimensionella balkelement. Det visar sig dock att 
denna balkrost har fel beteende när plattan plasticerar jämfört med både teori och 
alternativa FE-modeller utgjorda av skalelement. Därför används skalelement för 
plattor med elastoplastiskt beteende. För balkar så stämmer 2DOF och FE-modellerna 
väl överens med varandra, särskilt för elastiska balkar utsatta för stöt i mittpunkten. 
För elastiska plattor, så har 2DOF och FE-modellerna ganska likt beteende, men 
också för dessa så skiljer modellerna sig mer från varandra ju längre stöten sker från 
mitten av plattan. För elastoplastiska plattor är dock korrespondensen inte så bra, men 
en motsvarande maximal nedböjning kan hittas mellan 2DOF och FE. 2DOF-
modellen kan förbättras på flera sätt, vilka diskuteras, för att mer fullständigt kunna 
beskriva det elastoplastiska beteendet av en fritt upplagd armerad betongplatta. 

Nyckelord: Kollisionsstöt, impulslast, 2DOF, FEM, dynamisk respons, 
transformationsfaktor, balkrost, elasto-plastisk 
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1 Introduction 

1.1 Background 

During collisions between a moving object and a resisting structure, an impact load is 
obtained which can act very different from a static load. Examples of such collisions 
are when a structure is exposed to a vehicle crash, when an object is dropped on it 
during lifting, or if a strong wind throws an object at it. 

These scenarios will create a dynamic response which can be of great importance for 
the behaviour of the structure. The methods that regard collision impact in Eurocode, 
CEN (2004), are very simplified and further studies of the subject are needed. 
Therefore, both simplified and advanced methods have to be developed. 

This study is a continuation of a previous master’s thesis, Asplund and 
Steckmest (2014). 

 

1.2 Aim and objective 

The aim of this thesis is to evaluate how the design with regard to collision impact 
between simply supported concrete members, mainly quadratic slabs, and incoming 
objects, can be carried out using both advanced and simplified methods. The 
simplified approach is made with a two degrees of freedom (2DOF) mass-spring 
model, which is compared to more advanced finite element (FE) models. The FE 
models are seen as reference models because they are supposed to describe the reality 
better than the 2DOF model. From this comparison it can be evaluated if and when 
the 2DOF model corresponds to the FE model and under which circumstances it is 
not. 

It is also investigated how the response of the collision depends on the structural 
properties of the two objects involved. Even though it is the resisting concrete 
member that is of interest, the behaviour of the incoming object can change the 
overall behaviour of the collision. 

In the previous master’s thesis by Asplund and Steckmest, the behaviour of a linear 
elastic object colliding with a linear elastic simply supported concrete beam is 
evaluated. This is further developed in this thesis by introducing elastic and plastic 
non-linear (elasto-plastic) behaviour for both the incoming object and the resisting 
structure. The study is then extended to regard simply supported concrete slabs, which 
are of main interest, and it is evaluated whether similar concepts to that of beams can 
be used when making a 2DOF model. Different ways to model a concrete slab with an 
elasto-plastic behaviour are also studied, and it is checked if these models correspond 
to theory and hand calculations. 

 

1.3 Limitations 

In this thesis the damping effect of both the structure subjected to the impact load and 
the incoming object is neglected, since in most cases it has a small influence due to 
the relatively short duration of the applied load. This will be slightly on the safe side 
and unnecessary complicated calculations are avoided. 
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No long-term effects such as creep or shrinkage are considered, because it is only the 
parameters prior, during and after the collision impact that are of interest. For the 
same reason, thermal expansion is not considered because of that the temperature 
change during collision will not affect the structure sufficiently. When subjected to 
impulse loading, the reinforced concrete can obtain high strain rates. These higher 
strain rates can lead to a considerable increase in strength for the reinforced concrete, 
this is however neglected. Also, the influence of compressive membrane action is 
neglected. 

A slab is significantly more complex than a beam, which gives a large number of 
combinations regarding geometry, boundary conditions and placement of the load. 
With regard to this, only a finite number of combinations will be investigated. To 
further limit the studied number of combinations, and to avoid unnecessary 
complexities, all investigated slabs and beams in this thesis will be simply supported 
and without subjection to normal force. 

In this thesis, no physical tests are performed and the results from the 2DOF model 
are solely compared to the results from FE analysis, which is considered as describing 
reality better than the 2DOF model. To avoid numerical problems and long simulation 
times when modelling reinforced concrete in FE models in this thesis, the concrete 
and the reinforcement are not modelled separately, but as one single equivalent 
material. This equivalent material model will not give as accurate results as the 
separate material model during the collision, but it is deemed to be a good enough 
approximation for this study. 

 

1.4 Method 

A literature study is carried out covering the basic theory of dynamics and collisions, 
mass-spring systems and the structural response of reinforced concrete. A parametric 
study of several simplified dynamic 2DOF mass-spring models, that describes a 
collision between an incoming object and a concrete member, are made for the basic 
understanding of collision impact. These models are based on the fundamental 
equation of motion and are solved with a numerical integration method, called the 
Central Difference Method (CDM), in the commercial software MATLAB (2014). 
This 2DOF model is also verified and compared with classic impact theory. 

The 2DOF model represents two bodies where one is the resisting structure. If this 
body is studied separately it is called a single degree of freedom (SDOF) model. To 
be able to use the SDOF as a representation of a slab or a beam, some of its 
parameters needs to be adjusted, which is done by multiplying the parameters with 
transformation factors. These transformation factors are derived using energy 
equations which are solved analytically for beams and numerically for slabs. The 
numerical derivation uses FE analysis with the commercial software ADINA 900 
nodes version, ADINA (2014), to extract the displacement of a slab, and MATLAB to 
calculate the transformation factors with an algorithm that uses the derived equations. 

Dynamic FE models are made in ADINA which are compared to the 2DOF model in 
a collision study. In this study, the FE analysis is considered to be describing the 
reality best. When comparing the results from 2DOF and FE models a number of 
parameters can be evaluated. One parameter that is of special interest is the 
displacement of the resisting structure over time, since it can be directly transferred to 
load bearing capacity. The evaluated collisions cover different parameters for the 
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incoming object and different impact locations for the resisting object so that more 
general results are gained and more conclusions can be drawn. 

In the FE models, the concrete and reinforcement are modelled as one single material. 
The input parameters for this composite material are modified to approximately 
represent reinforced concrete using hand calculations in the commercial software 
Mathcad (2011). 

Both beam elements and shell elements are tested for the modelling of a slab in the FE 
software ADINA. When modelling a slab with beam elements, a grid of beams is used 
where each beam represents one strip of the slab. These beams are created for both 
directions of the slab. For the elasto-plastic behaviour of the beam elements, moment-
curvature and torsion-twisting relations and limits are manually implemented, which 
is done to better control the behaviour of each beam. This manually implemented 
behaviour is calculated using hand calculations in Mathcad. The beam grillage model 
is tested for different torsion-twisting relations to see how the torsional stiffness 
affects the slab. 

In order to keep the 2DOF model regarding a slab with elasto-plastic behaviour 
simple, a hand calculated yield limit based on the moment capacity of the slab is 
needed, which is obtained using the strip method. The strip method is intended for 
distributed load and in this thesis, it is the point loads that are of interest. Therefore, 
yield lines of the slabs must be assumed and it is presumed that the yield lines go 
straight from the point load to the four corners of the slab. 

 

1.5 Thesis outline 

In Chapter 2, the basic theory used in this thesis is presented. This covers basic 
concepts of dynamics and impact theory, introduction to mass spring systems, the 
numerical integration method CDM, and how to treat the behaviour of reinforced 
concrete. 

Chapter 3 contains a parametric study of different collision cases, with and without 
barrier, for a 2DOF model based on the theory of Chapter 2. The parametric study is 
made for the understanding of collisions and 2DOF systems and to decide which 
parameters are of importance. The results from the analysis are verified and compared 
to classic impact theory. 

In Chapter 4, it is described how an elastic or plastic beam or slab, can be transformed 
into a SDOF system with the help of so called transformation factors. The theory of 
how to calculate these transformation factors and some of the derived factors is 
presented. 

In Chapter 5, it is defined how the FE analysis of this thesis is carried out. It contains 
explanations of the equivalent Young’s modulus, how to model elasto-plastic 
behaviour of the incoming object, different alternatives of how to model slabs and 
elasto-plastic behaviour of beam elements. 

Chapter 6 covers a brief study of impact on simply supported beams and a more 
thoroughly study for simply supported slabs. This study handles both elastic and 
elasto-plastic behaviour of both the resisting structure and the incoming object. It also 
contains a thorough comparison between shell element modelling and beam grillage 
modelling for an elasto-plastic behaviour of the slab, and interesting discoveries for 
the SDOF transformation factors. 
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Chapter 7 is the concluding chapter of this thesis. Here, a final discussion is presented, 
which summarises the previous discussions and discoveries. A final conclusion is also 
presented in this chapter and some examples of further studies. 

Chapter 7.2 contains the references used in this thesis. Additional information that is 
not presented in the main chapters is attached as appendices at the end. 
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2 Theory 

2.1 Orientation 

The structural behaviour of structures can differ depending on if the applied load is 
static or dynamic, especially if the dynamic load is an impact load. In many cases this 
different behaviour is not taken into consideration when designing structures. Instead, 
as an approximation, a static load is used which corresponds to a simplified version of 
the dynamic load, Johansson and Laine (2012). This simplified load is in the form of a 
static load which has a corresponding load configuration that does the same amount of 
work as the dynamic load. This is called an equivalent static load. 

It is important to know that a specific equivalent static load depends on a specific 
dynamic load with its own conditions and the structural response of the loaded 
member. If these conditions are not fulfilled it is uncertain if the static load will be 
valid. This gives room for errors while trying to interpret the rules of Eurocode, CEN 
(2004). This along with unclear instructions in the rules on how to translate dynamic 
loads to static loads may make it difficult to make a reliable assessment for the 
structure at hand. Therefore it can be necessary to have a deeper understanding of the 
dynamic response of the structure. 

In this chapter basic knowledge about structural dynamics, impact theory with 
corresponding mass-spring system and structural behaviour of reinforced concrete 
regarding impact is presented. This chapter is based on work presented in Johansson 
and Laine (2012), Craig and Kurdila (2006), Al-Emrani (2011) and Engström (2014). 

 

2.2 Basic dynamics 

2.2.1 Force and pressure 

The term force can be described as the ability to accelerate the mass of a body. The 
relation between the force F, the mass m and its acceleration a is defined by Newton’s 
second law of motion as 

amF   (2.1) 

The force per unit area is defined as pressure P 

A

F
P   (2.2) 

where F is the force acting on the area A. 

 

2.2.2 Momentum and impulse 

The momentum p of a body m is defined as 

vmp   (2.3) 

where v is the velocity of the body. 
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If the body at hand has an initial velocity v0 and is subjected to a force F(t) during the 
time period t0 ≤  t ≤  t1, the final momentum will be 


1

0

)(1

t

t

0 dttFvmvmp  (2.4) 

where the change of momentum is defined as the transferred impulse I 

mvdttamdttmadttFI

t

t

t

t

t

t

 
1

0

1

0

1

0

)()()(  (2.5) 

and is equal to the area under the graph in a force-time diagram, see Figure 2.1. 

 

≤ ≤

F 

t 

I 

F 

t 

F 

t 

F2 

F3 

t2 t3 t1 → 0 

F1 → ∞ 

I 

I 

 

Figure 2.1 The impulse I is of equal magnitude in all three cases even though the 

load Fi and time ti differs. 

 

2.2.3 Work and kinetic energy 

If a force F acting on a body is causing a displacement u of the body it is said that the 
force has done the work W 

uFuFW x  cos  (2.6) 

where φ is the angle between the force and the direction of the displacement. The 
work done is only dependent on the force Fx acting in the direction of the 
displacement, see Figure 2.2a. The work done by a variable load can be expressed as 


u

xx dxxFW
0

)(  (2.7) 
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F 

u 

φ Fx x 

 

 

F 

F 

 

l 

M 
θ 

 

a) b) 

Figure 2.2 Work done by a) a force, and b) a moment. 

A corresponding measurement is the work done by a moment M, defined in 
Figure 2.2b as 

lFM   (2.8) 

for a given rotation  

 MW  (2.9) 

This can be expressed more generally if the moment varies with the angle α, as 





0

)( dMW  (2.10) 

The kinetic energy Ek for a body with mass m and the velocity v is defined as 

2

2
vm

Ek


  (2.11) 

Work and kinetic energy are both a measure of energy and are often used to determine 
the total response in a collision analysis. 

 

2.2.4 Dynamic equation of motion 

By dividing the forces acting on a body into external forces F(t) and internal forces 
R(u)sta and R(u )dyn, where the latter are referring to static respectively dynamic 
internal forces, a free body diagram can be obtained, see Figure 2.3. This free body 
can be expressed as a mass m, a spring with stiffness k and a damping c. 

 

m 

a 

F(t) 
 

 

F(t) 

k 

c 

m 

u 
R(u )dyn 

 

R(u)sta 

 
 

Figure 2.3 Schematic illustration of forces acting on an accelerating body. 

Force equilibrium of the system in Figure 2.3 gives 
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mauRuRtF dynsta  ))()(()(   (2.12) 

If the structural members are considered to behave linear elastically, the internal 
forces can be expressed as 

kuRsta   (2.13) 

ucRdyn
  (2.14) 

where u is the displacement of the body, u  is the velocity and the derivative of u with 
respect to time, k is the stiffness of the spring, and c is the damping factor. With 
equation (2.13) and (2.14) inserted in equation (2.12) the dynamic equation of motion 
can be expressed as 

)(tFkuucum    (2.15) 

where u  = a is the acceleration and the secondary derivative of u with respect to time. 

 

2.3 Impact theory 

2.3.1 Classic impact theory 

To explain the behaviour of an impact, a simple model of two masses, where one of 
them collides with the other can be used. One such simple system is illustrated in 
Figure 2.4, where one body with mass m1 and velocity v0 collides with a second body 
with mass m2 and no velocity. After the collision the first body has the velocity v1 and 
the second body has the velocity v2. 

 

m1 m2 

v0 

Before impact 

m1 m2 

v2 

After impact 

v = 0 

v1 

 
Figure 2.4 Example of an impact between one moving and one still body. 

The momentum and kinetic energy before the collision is stated as the momentum and 
kinetic energy for the first mass 

010 vmp   (2.16) 

2

2

01

k,0

vm
E


  (2.17) 

and after the collision they are 
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2211 vmvmp   (2.18) 

22

22

2211

k

vmvm
E





  (2.19) 

The impact procedure can be divided into two extreme cases named elastic collision 
and plastic collision. For an elastic collision both the momentum and the kinetic 
energy is preserved, which means that Ek,0 = Ek and p0 = p, and the velocities after 
collision can be derived as 

0

21

21

el1, v
mm

mm
v 




  (2.20) 

0

21

1

el2, v
mm

m
v 




2
 (2.21) 

From this it can be noted that v1,el < 0 if m1 < m2. The kinetic energy for the two 
bodies after collision is then 

,0k

21

21

0

21

211el1,1

el1k E
mm

mm
v

mm

mmmvm
E 




























222

,,
22

 (2.22) 

  0k

21

21

0

21

12el2,2

elk,2, E
mm

mm
v

mm

mmvm
E ,2

22
42

22



















  (2.23) 

From this, the total kinetic energy after collision Ek,el,tot that is acting in the same 
direction as body 2 (positive direction) can be stated as 










21elk,2,

21elk,2,elk,1,

totelk
mm,E

mm,EE
E ,,   (2.24) 

For a plastic collision only the momentum is preserved during the collision. The 
kinetic energy lost during the impact depends on the kinetic energy transformed to 
potential energy in body 1, when body 1 is doing a plastic work in the contact area 
towards body 2. The two bodies then have a common velocity which is stated as 

0

21

1

pl2,pl1,pl v
mm

m
vvv 


  (2.25) 

Thus, the total kinetic energy after collision is 

 
k,0

21

1

0

21

121pl21

totplk E
mm

m
v

mm

mmmvmm
E 




















22

,,
22

 (2.26) 
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To be able to describe elastic and plastic collisions, a coefficient of restitution e, is 
introduced. The coefficient of restitution is defined as 

0

12

v

vv
e


  (2.27) 

If e = 1 it is an elastic collision and if e = 0 it is a plastic collision and if 0 < e < 1 it is 
something in between. The velocities after collision when 0 ≤  e  ≤ 1 can be stated as 

0

21

21
1 v

mm

mem
v 




  (2.28) 

0

21

1
2 v

mm

me)(
v 





1

 (2.29) 

and the corresponding kinetic energy for the two separate bodies are 

2

2

11

k,1

vm
E


  (2.30) 

2

2

,
22

2k

vm
E


  (2.31) 

The total kinetic energy can then for any e be stated as 










0

0
,

1k,2k,1

1k,2

totk
v,EE

v,E
E  (2.32) 

An energy ratio Ek,tot / Ek,0 between the kinetic energy before and after the collision 
can be determined for different e and different mass ratios m1 / m2. This is illustrated 
in Figure 2.5, where it can be seen that the type of collision which depends on e and 
the mass ratio m1 / m2 plays a large role in how much of the kinetic energy in the 
positive direction is being preserved. 

If m1 < m2 for an elastic collision, body 1 will move in the opposite direction 
compared to body 2, which means that v1,el < 0. If the preserved kinetic energy in the 
positive direction for this elastic collision is divided with the preserved kinetic energy 
from the corresponding plastic collision, the following can be stated 

1

44

,,

,,







2

121

2

totplk

el2k

m

mmm

m

E

E
 

(2.33) 
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Figure 2.5 Energy ratio Ek,tot / Ek,0 as a function of the mass ratio m1 / m2 for e = 1 

(elastic), e = 0.25, e = 0.5, e = 0.75 and e = 0 (plastic). 

So, when m1 / m2 → 0, the elastic collision preserves a kinetic energy in the positive 
direction that is four times larger than the plastic collision. Also, when m1 / m2 = 1, the 
preserved kinetic energy in the elastic case is two times larger than for the plastic 
case. As illustrated in Figure 2.5, elastic and plastic collision preserve the same 
kinetic energy when m1 / m2 ≈ 100 or larger. 

From this it can be concluded that there may be a considerable difference between 
elastic and plastic collision. To assume elastic collision gives results on the safe side, 
though it can be excessive. On the contrary, the assumption of plastic collision can 
give results on the unsafe side. 

 

2.3.2 Importance of mass 

According to Section 2.2.2, the impulse I can be stated as 

vmI   (2.34) 

and the kinetic energy for the same body is 

2

2
vm

Ek


  (2.35) 

Using equation (2.34) and (2.35) the kinetic energy can be stated as a function of the 
impulse and the mass 

m

I
Ek

2

2

  (2.36) 
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As can be seen, a higher mass gives a lower need for energy absorption. This can be 
compared with Newton’s second law of motion 

amF   (2.37) 

where it can be seen that a higher mass generates a lower acceleration, and therefore 
also a lower response for the exposed body. 

During a collision impact, a large load is acting during a very short time. In such a 
case, it may be more relevant to study the collision impulse, than the magnitude of the 
load. In Figure 2.6 a plastic collision is illustrated, where m1 for example can be a 
simplification of a colliding vehicle, and m2 the resisting structure. 

 

m1 m2 

v1 

Before impact 

m1 m2 

v2 

After impact 

v = 0 

 

Figure 2.6 A schematic illustration of a plastic collision. 

In Section 2.3.1, the preserved kinetic energy after a plastic collision is stated as 

 
k,0

21

1

0

21

121pl21

totplk E
mm

m
v

mm

mmmvmm
E 




















22

,,
22

 (2.38) 

which means that Ek,pl,tot < Ek,0. This can be explained by kinetic energy being 
transformed into potential energy within body 1. As can be seen in equation (2.38) a 
larger mass of body 2 m2 generates a lower preserved kinetic energy and therefore a 
larger potential energy, which for collisions is seen as advantageous. 

 

2.3.3 Energy absorption from deformation 

Civil engineers are used to static models where a structure is supposed to withstand a 
load with limited deformations, Johansson and Laine (2012). In such static cases the 
stiffness and the load capacity are critical for design. However, when the structure is 
subjected to a large impulse load, the maximum static load capacity is often reached 
and it is therefore necessary to use the resilience of the structure in the design instead. 

As can be seen in equation (2.6) the ability to absorb energy in a structure is a 
combination of force and deformation. This means that for a structural member 
subjected to an impulse load, it is often more important for the structure to be able to 
deform, than to have a high stiffness and load capacity, see Figure 2.7. 
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u 
u1 u2 

R1 

Wi,1 

R2 

Wi,2 

Wi,2 > Wi,1 

 

Figure 2.7 Comparison in work absorption between a structure with low stiffness 

and high ability to deform, and a structure with high stiffness and low 

ability to deform. 

The structural response in this thesis is studied with three types of simplified 
responses: linearly elastic response (elastic response), ideal plastic response (plastic 
response) and a combination of elastic and plastic response (elasto-plastic response), 
see Figure 2.8. These simplifications are good approximations for many kinds of 
structures and are easily understood, Johansson and Laine (2012). 
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R 

Rpl 

Wi 

upl  
 

u 

R 

Wi 

utot uel 

utot = uel + upl 

k 

Rpl 

 

a) b) c) 

Figure 2.8 Structural response with assumption of a) linear elastic response, 

b) ideal plastic response, and c) elasto-plastic response. 

 

2.4 Single degree of freedom systems 

2.4.1 Orientation 

When a simplified model for a dynamically loaded structure is requested, or as in this 
thesis a reinforced concrete member, a single degree of freedom (SDOF) system can 
often be used. In Figure 2.9 a SDOF model is illustrated where F(t) is a load varying 
with time, R(u) represents the static internal resistance and c is the damping 
coefficient. Damping reduces the amplitude of vibration over time. Usually when 
designing with regard to collision impact it is the maximum amplitude of vibration 
that is of interest. The influence of the damping effect is negligible for short 
collisions, and hence the damping will be neglected in this thesis. 
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F(t) 

c  u  R(u) 

m u  

 

 

 
 

F(t) 

R(u) 

m u 

 

Figure 2.9 A SDOF system where the effect of damping c is neglected. 

According to Johansson and Laine (2012) there are two extreme ways to describe 
dynamic loads, which are illustrated in Figure 2.10. The first is to use a characteristic 
impulse for an ideal impulse load, which means infinite high pressure acting at an 
infinitesimal short time. The second is to use a characteristic pressure load, with zero 
rise time, for an eternal shock wave. 

   
 

Load, F 

Time, t 

Ik 

t0    
 

Load, F 

Time, t t0 

Fk 

 

a) b) 

Figure 2.10 The two dynamic extreme cases where t0 is the starting time 

a) characteristic impulse Ik, and b) characteristic pressure load Fk. In 

both cases, the load rise time is zero. 

In this thesis only characteristic impulse load Ik is used because of the relatively short 
duration of the studied loads. 

To stop the kinetic energy Ek, initiating the motion of a body, an equally large internal 
work Wi is needed. The kinetic energy Ek can be approximated as the external work 
We if there is no barrier. This means that 

ei WW   (2.39) 

where 

ke EW   (2.40) 

and as described in Section 2.3.2 

m

I
EW k

ke
2

2

  (2.41) 
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Wi is solved differently depending on whether elastic, plastic or elasto-plastic 
response is assumed.  

 

2.4.2 Elastic response 

For an elastic response, the stiffness k is constant, and the inner resistance R(u) can be 
stated as 

  kuuR   (2.42) 

where u is the deformation. Using this, the internal work Wi can now be calculated as 
the marked area in Figure 2.11b. 

 
22

2

elelel
i

kuuuR
W 


  (2.43) 
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a) b) c) 

Figure 2.11 A SDOF system with elastic response a) dynamic SDOF system, 

b) force-deformation relation where the resistance force is linear, and 

c) energy balance between internal and external work. 

A combination of Wi = Ek and equation (2.43) gives the elastic deformation uel 

m

I
u k

el   (2.44) 

where ω is the angular frequency defined as 

m

k
  (2.45) 

This gives the angular frequency in rad/s, but it can also be expressed in Hz as 

m

k
f




2

1

2
  (2.46) 
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2.4.3 Plastic response 

For a plastic system R(u) is constant, which is illustrated in Figure 2.12b. The internal 
work can thus be stated as 

 
plplpli RuuuRW   (2.47) 

Where upl is the plastic deformation that is needed for the system to absorb the 
external work We, see Figure 2.12c. 
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R(u) 
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a) b) c) 

Figure 2.12 A SDOF system with plastic response a) dynamic SDOF system, 

b) force-deformation relation where the resistance force is constant, 

and c) energy balance between inner and external work. 

The plastic deformation can thus be derived by a combination of equation (2.41) and 
(2.47) as 

mR

I
u k

pl
2

2

  (2.48) 

 

2.4.4 Elasto-plastic response 

For an elasto-plastic system, a bilinear relation between resistance force and 
deformation is sought. This relation is stated as 

 









el,1

,1el

uu   ,R

uu  ,ku
uR  (2.49) 

where uel,1 is the limit for the elastic response. The internal work for the elasto-plastic 
response can be calculated as the area marked in Figure 2.13b, which is 

 
pl,1el,1i uu

R
W 2

2
  (2.50) 
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where upl,1 is the required plastic response for an elasto-plastic system whereas upl is 
the pure plastic response for a plastic system. 
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a) b) c) 

Figure 2.13 A SDOF system with elasto-plastic response a) dynamic SDOF system, 

b) force-deformation relation where the resistance is bilinear, and 

c) energy balance between internal and external work. 

The required plastic deformation can be stated by combining equation (2.41) with 
equation (2.50) as 

22
,

2

1,
1elk

pl

u

mR

I
u   (2.51) 

Because of the pure plastic deformation as in equation (2.48), and the total 
deformation as in Figure 2.13b, the total deformation can be stated as 

2
,1el

pltot

u
uu   (2.52) 

 

2.5 Equivalent static load 

2.5.1 Orientation 

In many cases it is more convenient to work with static loads instead of dynamic 
loads. Hence there is an interest in translating the dynamic loads into an equivalent 
static load. This simplified equivalent static load is considering a static load which 
does the same amount of external work as the dynamic load Johansson and 
Laine (2012). 

 

2.5.2 Elastic response 

The equivalent static load Q is obtained, for an elastic system, by combining the 
relationship 

2
el

e

Qu
W   (2.53) 
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with equation (2.43) 

2

2
el

e

ku
W   (2.54) 

Q can be written as 

elkuQ   (2.55) 

Combining equation (2.44), (2.45) and (2.55) gives 

kk I
m

k
IQ   (2.56) 

This is the static equivalent load Q which corresponds to the load that generates the 
same displacement as the impulse Ik. 

 

2.5.3 Plastic response 

For a case with plastic response the static equivalent load Q can be determined by 
setting the external work in equation (2.41) equal to 

ple QuW   (2.57) 

This gives 

pl

k

um

I
Q




2

2

 (2.58) 

which combined with equation (2.48) gives 

RQ   (2.59) 

where R is the resisting force obtained from the maximum allowed displacement upl. 

 

2.5.4 Elasto-plastic response 

An elasto-plastic response is a combination of elastic and plastic response. This means 
that the equivalent static load is, as for the case with plastic response, determined by 

RQ   (2.60) 

but here is R determined by the elastic stiffness k, via the resulting elastic deformation 
u1,el from equation (2.49) and the allowed plastic deformation u1,pl from 
equation (2.52). 
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2.6 Two degrees of freedom mass-spring systems 

In this section, results from different collision scenarios using two degrees of freedom 
(2DOF) mass-spring systems are presented and evaluated. Additional results are also 
presented in Appendix B. The calculations are made using the Central Difference 
Method described in Section 2.7 in the commercial software MATLAB. For the code, 
see Appendix H.1. For more collision scenarios and additional studies and evaluation, 
see Asplund and Steckmest (2014). 

A 2DOF system is a system where two separate displacements can occur. In this 
thesis is a 2DOF system referring to a mass-spring system consisting of two bodies 
with corresponding displacements which can be used as a simplified method to 
describe collisions, see Figure 2.14. The viscous damping forces are neglected as 
discussed in Section 2.4.1. 

 

 v0 

m1 m2 

R1(u1,u2,t) R2(u2,t) 

u1 u2 

m1 
F1(t) 

R1(u1,u2,t) 
m2 

F2(t) 

R2(u2,t) 

u2 u1 

 

Figure 2.14 Illustration of a 2DOF mass-spring system which is used to analyse 

collisions in this thesis. 

This system of two bodies and springs are able to express the behaviour of the bodies 
during the entire collision, compared to the classic impact theory described in 
Section 2.3.1, which only express the behaviour before and after the collision. 

It is possible to derive the dynamic equation of motion, described in Section 2.2.4 for 
a SDOF system, of the mass-spring system in Figure 2.14 by applying Newton’s 
second law of motion. A free body diagram of the mass-spring system is presented in 
Figure 2.15. 

 

Rsta,1 

m1 

1u  

F1 Rsta,1 Rsta,2 

m2 

2u  

 

Figure 2.15 Free body diagram of a 2DOF mass-spring system. 

Force equilibrium of the free body diagram gives 

11sta,11 umRF :  (2.61) 

22sta,2sta1 umRR :  (2.62) 

If the structural members are considered having a linear elastic response the internal 
forces Rsta can be expressed as 

 211sta,1 uukR   (2.63) 

22sta,2 ukR   (2.64) 
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where u is the displacement of the body, u  is the acceleration, and the secondary 
derivative of u with respect to time, and k is the stiffness of the spring. By inserting 
equation (2.63) and (2.64) into equation (2.61) and (2.62) the dynamic equation of 
motion for the two bodies can be expressed as 

  121111 Fuukum   (2.65) 

  0 2121122 kkuukum   (2.66) 

which can be written on matrix form as 
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 (2.67) 

and with symbolic matrix notations as 

fKuuM   (2.68) 

where M is the mass matrix, K is the stiffness matrix, u is the displacement vector, u

is the acceleration vector and f is the load vector. 

In this thesis, the mass in Figure 2.16a is referred to as body 1 and the mass in 
Figure 2.16b is referred to as body 2. 
 

m1 

k1 k2 

m2 

 

a) b) 

Figure 2.16 Illustration of a) body 1 with mass m1 and stiffness k1, and b) body 2 

with mass m2 and stiffness k2. 

The change of internal work dWi of the bodies are defined as the internal resistance 
force R of the body times the change in displacement du, i.e. 

11i,1 duRdW   (2.69) 

22i,2 duRdW   (2.70) 

In the same way, the change of external work dWe of the bodies are defined as the 
external load F times the change in displacement du. In this thesis body 1 has an 
initial velocity v0 and F1 = 0 which means that the external energy is equal to the 
kinetic energy of body 1 We,1 = Ek,1 before collision. The external force acting on 
body 2 is equal to the internal resistance force of body 1 F2 = R1 which gives 

0, 1edW  (2.71) 
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21e,2 duRdW   (2.72) 

 

2.7 Central Difference Method 

There are several methods that are used to numerically solve the dynamic equation of 
motion. The Central Difference Method (CDM) is one of the most fundamental of 
these and it is widely used because it is an exceedingly simple method to describe, 
and it is a second-order accurate algorithm. Experience in actual engineering 
problems suggests that second-order accurate techniques are required in many 
applications, see Craig and Kurdila (2006). If the dynamic equation of motion, 
equation (2.15), is written with symbolic matrix notations it becomes 

)(tfuKuCuM    (2.73) 

If u(tn) = un is stated, where tn is the time at iteration n, the velocity nu  at the time tn 

can be written as 

h

nn

n
2

11  


uu
u  (2.74) 

where h is the chosen time step. As can be seen, the derivative at time tn in equation 
(2.74) is an approximation based on the slope of the line between u(tn-1) and u(tn+1), 
see Figure 2.17. To maintain this order of approximation the velocity can be written 
for step n + 1/2 as 

h

nn

n

uu
u


 


1

2/1  (2.75) 

and for step n - 1/2 as 

h

nn

n

1
2/1







uu
u  (2.76) 

The value of the acceleration nu , can then be stated as 

2

112/12/1 2

hh

nnnnn

n

 





uuuuu
u


  (2.77) 

which is illustrated in Figure 2.17. 
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Figure 2.17 Illustration the approximate calculation of the velocity nu and the 

acceleration nu . 

If equation (2.74) and (2.77) is inserted in equation (2.73) it can be formulated as 
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which can be rewritten as 
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The damping is in this thesis neglected due to its small effect on the system during the 
studied time, as discussed in Section 2.4.1. Without the damping, equation (2.79) can 
be written as 
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When observing equation (2.80) it can be seen that the displacements un-1 when n = 0 

is needed. It can be stated as 

0

2

001
2

uuuu 
h

h   (2.81) 

The CDM algorithm is conditionally stable, which in this case means that the method 
is stable provided that the time step h is selected to be smaller than a critical step size 
hcr. According to Johansson and Laine (2012), the critical step size can be stated as 

k

m
hcr 2

2



 (2.82) 

When solving a SDOF or 2DOF system, an even lower step size is most often needed, 
and a step size that is one hundredth of the load duration t1 – t0 is often valid, where t0 

is the time at the start of the loading. That is, the step size should fulfil 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:87 
23 









100
0tt

h

h
1

cr

 (2.83) 

When deriving equation (2.80), constant stiffness matrix K is used. However, it is 
possible to use the CDM with these matrices varying over time. For the stiffness, this 
is done by letting the time varying k(t) be a function of the current displacements u(t), 
see Figure 2.18. This is a secant stiffness and it can be stated as t

k = tk(
t
u). In practice, 

the actual concern is not the stiffness, but the internal force tR which is defined as 

ukR
ttt   (2.84) 

 

u 

R 

u(tk) 

R(ti) 

k(u(ti)) 
k(u(tj)) 

u(ti) u(tj) 

k(u(tk)) 

R(tj) 

 

Figure 2.18 Secant stiffness k at time t for a system with an arbitrary response. 

The stiffness at unloading can be modelled in the same way. For a plastic response, it 
is possible to model the loading and unloading with a desired linearly elastic stiffness, 
and then at a certain yield-stress, use the secant stiffness instead, see Figure 2.19. 

 

u 

R 

k(u(tj-∆t)) 

u(tj-∆t) 

R(u(tj-∆t)) 
k(u(t0)) 

k(u(tj)) 

R(u(tj)) 

u(tj)  

Figure 2.19 Stiffness at unloading for a system with plastic properties. 

The CDM is an explicit numerical integration method, but in this thesis when using 
the commercial FE software ADINA (2014), implicit numerical integration is used. 
This decision is based on a study in Carlsson and Kristensson (2012) where the 
explicit and implicit integration methods in ADINA are compared to hand 
calculations. For a summarised step by step algorithm of how to use the Central 
Difference Method, see Appendix A. 
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2.8 Structural response of reinforced concrete 

2.8.1 Orientation 

A reinforced concrete member can be considered as a composite of concrete and 
reinforcement where concrete has a high compressive strength and the reinforcement 
has a high tensile strength, Al-Emrani (2011). For an impact loaded structure, the 
ductility is of great importance and the ductility of a composite is dependent on the 
properties of the involved materials. Concrete is a brittle material whereas 
reinforcement steel is ductile, see Figure 2.20 and Figure 2.21 respectively. Therefore 
the ability of reinforced concrete to show a ductile behaviour highly depends on the 
properties of the reinforcement steel. 

 σ 

ε 

fct 

fcc 

Compression 

Tension 

 

Figure 2.20 Stress-strain behaviour of concrete showing tensile strength fct and 

compressive strength fcc. 

 

fsy 

fsu 

s,fsu su 
 

 

sy sh  

Figure 2.21 Stress-strain behaviour of reinforcement steel showing yield stress fsy, 

ultimate strength fsu, yield strain εsy, strain at hardening εsh, and strain 

at ultimate strength εs,fsu. 

 

2.8.2 Structural response of reinforced concrete beams 

During increased loading of a reinforced concrete beam, different states are studied. 
State I is the uncracked state where no cracking has occurred and the beam has a 
linear elastic behaviour with primarily concrete properties. During state II the beam 
starts to crack and the reinforcement has an increasing importance for the behaviour. 
State III is the phase when the reinforcement starts to yield and the end of state III is 
the ultimate state for which the beam is designed. After state III the reinforcement of 
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the beam can be subjected to some strain hardening before the maximum capacity is 
reached. These states can be described using a simplified, bilinear, elasto-plastic 
model where the elastic part is based on a fully cracked beam and the elastic part on 
the ultimate state, see Figure 2.22. 

 

Deflection, u 

Load, q 

State I 

State II 

Strain hardening 

u 

q 

State III 

Simplified response 

Plastic Elastic 

uel upl 

Stiffness of cracked 
concrete (State II) 

 

Figure 2.22 Stress-strain behaviour of a simply supported reinforced concrete beam 

subjected to uniformly distributed load, illustrating the different 

response stages and a simplified response. 

 

2.8.3 Structural response of reinforced concrete slabs 

A slab is a structural member with a thickness relatively small in relation to its length 
and width. In Eurocode 2, CEN (2004), it is stated that a slab has a ratio between 
width and thickness not smaller than five. There are three main types of slabs found in 
the literature: one-way slabs, two-way slabs and cantilever slabs. The first two slab 
types carries the load in one and two directions, respectively, and are supported on 
two or more edges. It is also possible with intermediate supports such as columns. The 
edges of slabs may be simply supported, partly fixed, fixed or free. Cantilever slabs 
also carry the load in one direction since they are only supported on one edge, 
Engström (2014). A slab is significantly more complex than a beam, which gives a 
large number of combinations regarding geometry, boundary conditions and 
placement of loads. 

There are different methods of how to design according to moment distribution and 
deformations in the ultimate limit state. The strip method, which is a lower bound 
method, and the yield line method, which is an upper bound method, are two 
commonly used approaches, Engström (2014). Both methods are based on the plastic 
capacity of the slab. 

The plastic capacity of a slab will first be reached in the most stressed point where a 
plastic hinge is formed. For a simply supported rectangular slab subjected to a 
uniformly distributed load the most stressed point is located in the centre and this is 
where the hinge will form. The hinge will spread along a yield line and branch off to 
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the corners and form a mechanism after which the slab cannot carry any increased 
loading, see Figure 2.23, Hultin (1994). For each slab a yield figure must be assumed 
and the capacities can be determined by equilibrium equations, which are different 
between the two methods. 

 

Figure 2.23 Illustration of how a plastic hinge is formed in the centre of a simply 

supported rectangular slab subjected to uniformly distributed load and 

how the yield line develops towards the corners. 

In this thesis the yield figure assumed for a slab subjected to a point load is based on 
the same principles as for a slab subjected to a uniformly distributed load, as 
illustrated in Figure 2.23, Johansson (2014). 

A 
A 

 

Figure 2.24 Illustration of how the yield lines are assumed to from at simply 

supported slabs subjected to a point load in the centre. 

The hand calculated capacities of the slabs in this thesis are calculated with the 
principles of the strip method. But instead of calculating the required amount of 
reinforcement for a given load, the ultimate load capacity is calculated for a given 
reinforcement. The moment capacity Mx of the simply supported slab in Figure 2.24 is 
defined with the strip method in the same manner as for a slab subjected to a 
uniformly distributed load, as illustrated in Figure 2.25. The strip method is described 
in Engström (2014). 
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Figure 2.25 Illustration of how the moment capacity Mx for a slab subjected to a 

point load is defined in the same manner as for a slab subjected to a 

uniformly distributed load. 

For all strip method calculations with point loads in this thesis, the yield lines are 
assumed to stretch from the point of loading to the corners, see Figure 2.26. 

 

Figure 2.26 Illustration of how the yield lines are formed at a simply supported 

quadratic slab subjected to an arbitrary point load. 

 

2.8.4 Rotational capacity 

When the load capacity of a structure is evaluated with a plastic or elasto-plastic 
response it is often the allowed deformation u that is the governing factor. Hence it is 
needed to calculate the deformation u to find the structural capacity. It is also needed 
to calculate the deformation u to determine the equivalent load Q, as described in 
Section 2.5. It is possible to calculate the deformation with the rotational capacity  of 
the structure, which is a measure of the structure’s ability for plastic redistribution, see 
Figure 2.27. This rotational capacity is calculated in the point where a plastic hinge is 
formed. A plastic hinge is where a critical section experience substantial deformations 
when subjected to a bending moment, provided that the ductility of the reinforcing 
steel is sufficient, for a slab this critical section is along a yield line. It does not mean 
that the load bearing capacity in the structural member is reached. In fact, if the 
structural member is statically indeterminate it can carry more load until another 
plastic hinge is formed. A collapse mechanism in beams consists only of a critical 
number of plastic hinges, whereas for slabs a yield line is needed. When the number 
of critical plastic hinges is reached or a yield line is formed a collapse mechanism is 
formed, Johansson and Laine (2012). 
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θ2 θ1 

 

Figure 2.27 Plastic rotation i of a continuous beam, where i should not exceed the 

rotational capacity pl. 

A method to calculate the rotational capacity for dynamic load cases is stated in 
Eurocode 2 CEN (2004). The rotational capacity is here dependent on concrete and 
reinforcement class, see Figure 2.28. 

 
xu / d [-] 

pl,d [10 -3 rad] 

Crushing of 
concrete Failure of 

reinforcement 

Class C 

Class B 

 

Figure 2.28 Design value for the plastic rotation capacity pl,d for different 

concrete and reinforcement steel classes according to Eurocode 2 

CEN (2004). The limit between reinforcement and concrete failure is 

visualized for concrete class C50/60 and reinforcement class C. 

There is however a restriction regarding the reinforcement for the relationship 
presented in Figure 2.28 and for concrete classes ≤  C50/60 it is xu / d ≤  0.45 and 
xu / d ≤  0.35 for classes > C50/60. 

The relationship presented in Figure 2.28 is only valid for shear slenderness Ȝ = 3.0. 
For other values of the shear slenderness the plastic rotational capacity presented in 
Figure 2.28 should be multiplied by a correction factor kλ 

pldpl k   ,  (2.85) 

where 

3


 k  (2.86) 

and the shear slenderness is defined as 
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d

l0  (2.87) 

where l0 is the distance between the considered maximum moment section and the 
adjacent zero moment section after plastic redistribution, and d is the effective depth 
of the cross-section. As a simplification the shear slenderness Ȝ may be estimated as 

dV

M

Ed

Ed


  (2.88) 

where MEd is the design value of the bending moment and VEd is the design value of 
the shear force, Engström (2011). 

It is possible to calculate the maximum deformation upl,d which the structural member 
can withstand with the plastic rotation presented in equation (2.85). According to 
Eurocode 2, for a simply supported beam that is subjected to either a uniformly 
distributed load or a point load in the mid-span, the maximum deformation can be 
calculated as 

2

,

,

l
u

dpl

dpl





 (2.89) 

where l is the length of the span. 

There are other design codes that give recommendations for how to calculate 
rotational capacity. In Johansson and Laine (2012) a comparison between the 
recommendations given in Betonghandboken Cederwall (1990), Bk25:2 
Fortifikationsförvaltningen (1973) and Eurocode 2 is made. 
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3 Study of 2DOF Collision Models 

3.1 Orientation 

This chapter covers a parametric study of collisions for a 2DOF model. This 2DOF 
model is used throughout this thesis and is made with the Central Difference Method 
in the commercial software MATLAB, see Appendix H.1. 

In Section 3.2 are collisions without a barrier analysed, and in Section 3.3 are 
collisions with a barrier analysed. The barrier is in the form of an additional spring 
which is attached to body 2 at one side, and attached to a fixed support at the other 
side. 

 

3.2 Without barrier 

3.2.1 Orientation 

In this section, elastic and plastic response will be studied for a 2DOF system where 
only body 1 has a spring; i.e. body 2 is free without any barrier preventing the 
movement. This system is then easily compared to a collision according to classic 
theory, see Figure 3.1. In Section 2.3.1, two bodies are studied before and after 
collision with classic impact theory. 

 

Classic impact theory 2DOF system 

m1 m2 

v0 v = 0 v0 

m1 m2 

k1 

v = 0 

 
Figure 3.1 Schematic illustration of how the classic impulse theory can be 

modelled using a 2DOF mass-spring system. 

An important difference between the two models is that the 2DOF system can 
describe the whole course of the collision, prior to, during and after the impact while 
the classic impact theory only is capable of describing the velocities before and after 
the collision. The response of a collision between two bodies, according to the classic 
impact theory is presented in Figure 3.2 for elastic cases, e = 1, and plastic cases, 
e = 0. 

Two points on both the elastic and the plastic response curve are chosen to be further 
evaluated in this section. These points correspond to a mass ratio m1 / m2 of 0.2 and 2, 
see Figure 3.2. Ek,tot and Ek,0 are defined as described in Section 2.3.1. The analyses 
are made with the 2DOF algorithm in Appendix H.1. 
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Figure 3.2 Points of interest for the elastic and plastic cases in the classic impact 

theory for further studies. Marked mass ratios m1 / m2 are 0.2 and 2. 

 

3.2.2 Elastic collision 

The parameters for the evaluation of the elastic response of a 2DOF system without 
barrier are chosen so that the mass ratios m1 / m2 are equal to the chosen points of 
interest in Figure 3.2. The mass ratios are met by having a constant mass of body 2 m2 

and vary the mass of body 1 m1. Here, m2 = 7 500 kg is symbolising a reinforced 
concrete member, while m1 = 1 500 kg and m1 = 15 000 kg are symbolising a car and 
a lorry, respectively. In addition to the difference in mass, a change in stiffness of 
spring k1 is also considered. The initial velocity v0 is set to 27.8 m/s, which 
corresponds to a velocity of 100 km/h. The input parameters of collision A1-A4 can 
be seen in Table 3.1. 

Table 3.1 Input parameters for collision A1-A4 with elastic response for the 

2DOF system. 

Case 
v0 

[m/s] 
k1 

[kN/m] 

m1 
[kg] 

m2 
[kg] 

Collision A1 27.8 100 1 500 7 500 

Collision A2 27.8 100 15 000 7 500 

Collision A3 27.8 1 000 1 500 7 500 

Collision A4 27.8 1 000 15 000 7 500 

The two bodies involved in the collision should only interact when there is a 
compressive force in the spring, which means that the tensile response of the spring 
must be excluded. This is done by setting a linear elastic response of the spring when 
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the deformation ∆u = u1 – u2 is positive and a stiffness of zero when the deformation 
is negative, see Figure 3.3. 

∆u = u1 – u2 

R 

k1 

 

Figure 3.3 Illustration of how the spring stiffness k1 varies with the deformation ∆u 

for an elastic case. 

In Table 3.2 the 2DOF analysis of collision A1-A4 are compared to calculations 
according to classic impact theory described in Section 2.3.1. After testing different 
time steps h for the 2DOF model it is concluded that smaller time steps give results 
closer to the classic impact theory. In this section, a time step of h = 1 ms is used for 
the 2DOF model which gives identical results between the two theories. As can be 
observed in Table 3.2 collision A1 and A3 give the same results. This is due to the 
fact that the stiffness k does not affect the final velocities v after the collision, but only 
the behaviour during the collision. This is also the case for collision A2 and A4. For 
collision A1 and A3, I1 < 0, which means that body 1 moves in the negative direction 
after the collision and that body 2 has a larger impulse than the initial impulse, I2 > I0. 
For all four collisions is the total impulse preserved. 

Table 3.2 Comparison of results between the 2DOF system and the classic impact 

theory with elastic response, collision A1-A4. 

 
Collision A1 and A3 Collision A2 and A4 

2DOF Classic theory 2DOF Classic theory 

v0 [m/s] 27.80 27.80 27.80 27.80 

v1 [m/s] -18.53 -18.53 9.27 9.27 

v2 [m/s] 9.3 9.3 37.1 37.1 

Ek,0 [kJ] 580 580 5 796 5 796 

Ek,tot [kJ] 322 322 5 796 5 796 

I0 [kNs] 41.70 41.70 417 417 

I1 [kNs] -27.80 -27.80 139.05 139.05 

I2 [kNs] 69.75 69.75 278.25 278.25 

The displacement u, velocity v, internal resistance R and impulse I as a function of 
time for collision A1 are illustrated in Figure 3.4. In collision A1, the mass of body 1 
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is less than the mass of body 2, i.e. m1 < m2. As discussed in Section 2.3.1 body 1 will 
move in the opposite direction after the collision, as can be seen by the negative 
displacement in Figure 3.4a. This is also shown in Figure 3.4b where body 1 receives 
a negative velocity after the collision while body 2 moves in the positive direction. 
The duration of collision A1 is about 0.35 s as seen in Figure 3.4c where the internal 
force in the spring is illustrated. Here it is clear that the spring is only active when 
there is a compressive force and that the tensile response is excluded. Figure 3.4d 
illustrates how the impulse, or momentum, is transferred from body 1 to body 2 and as 
the two curves are mirrored it is clear that the momentum is preserved during the 
collision. In Figure 3.4 it can be seen that the displacement u during the collision 
reaches 3.5 m for body 1, which might seem to be unreasonably large. The reason that 
the displacement is large is due to the combination of low spring stiffness k1 and high 
initial velocity v0. 

 

a) b) 

 

c) d) 

Figure 3.4 Response for collision A1 a) displacement u, b) velocity v, c) internal 

resistance R, and d) impulse I. 

The displacement u, velocity v, internal resistance R and impulse I as a function of 
time for collision A3 are illustrated in Figure 3.5. As can be observed the duration of 
the impact for collision A3 is approximately 0.1 s, which is shorter than collision A1. 
However, the shape of the response curves is the same for both collision A1 and A3. 
This demonstrates that the stiffness k1 has a great influence on the duration of the 
impact. Greater stiffness gives shorter duration of impact and vice versa. For 
corresponding results for collisions A2 and A4, see Appendix B.1. 
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a) b) 

 

c) d) 

Figure 3.5 Response for collision A3 a) displacement u, b) velocity v, c) internal 

resistance R, and d) impulse I. 

In Figure 3.6 the kinetic energy in the positive direction of body 2 Ek,tot is illustrated 
as a function of time for collision A1-A4. For collision A2 and A4 the mass of body 2 
is lower than the mass of body 1, i.e. m1 > m2, and this is seen as there is no loss in 
kinetic energy after the collision. However, for collision A1 and A3 there is a loss in 
the kinetic energy after the collision since m1 < m2, i.e. body 1 bounce back and get a 
negative velocity after impact. This is the same response as calculated with the classic 
impact theory presented in Table 3.2. As can be seen in Figure 3.6 the time of the 
collisions is varying between the collisions which have different spring stiffness k1. 
This means that a higher stiffness gives shorter collision time and vice versa. 
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a) b) 

Figure 3.6 Change in kinetic energy Ek,tot in the positive direction of body 2 during 

a) collision A1 and A3, and b) collision A2 and A4. 

In Figure 3.7 the internal work Wi of the spring is illustrated as a function of time t for 
collision A1-A4. As can be observed in Figure 3.7a, body 1 moves in the opposite 
direction compared to body 2 after the collision, and therefore a loss in internal work 
Wi in the final phase of the collision. As can be observed in Figure 3.7b, in 
collision A2 and A4 both bodies are moving in the same direction after the collision. 
It can also be observed that collision A1 and A2 has lower stiffness k1 than 
collision A3 and A4 since the durations of the collisions are larger. 

 

a) b) 

Figure 3.7 Change in internal work Wi during a) collision A1 and A3, and 

b) collision A2 and A4. 

 

3.2.3 Plastic collision 

The plastic response of a 2DOF system without barrier is now studied for the same 
collisions as in Section 3.2.2, with the exception that in these cases, two different 
internal resistances R1,max are considered instead of two separate stiffness k1. The 
reason for this is that for a plastic collision, the internal resistance of body 1 R1 is 
constant and there is no stiffness k1. Four plastic collisions are analysed in this 
section, see Table 3.3 for the input parameters. 
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Table 3.3 Input parameters for collision B1-B4 with plastic response for the 

2DOF system. 

Case 
v0 

[m/s] 
R1,max 
[kN] 

m1 
[kg] 

m2 
[kg] 

Collision B1 27.8 250 1 500 7 500 

Collision B2 27.8 250 15 000 7 500 

Collision B3 27.8 500 1 500 7 500 

Collision B4 27.8 500 15 000 7 500 

As discussed in Section 3.2.2 for the elastic collisions, the two bodies involved in the 
collision interact only when there is a compressive force in the spring, and the tension 
response of the spring is excluded. This is done by using a constant internal resistance 
R1 when the deformation ∆u is positive and no resistance when the deformation is 
negative, see Figure 3.8. 

R1,max 

∆u = u1 – u2 

 

R 

 

Figure 3.8 Illustration of how the internal resistance R1 is constant for the 

deformation ∆u for a plastic case. 

In Table 3.4 the 2DOF analysis of collision B1-B4 are compared to calculations 
according to classic impact theory described in Section 2.3.1. As can be observed in 
Table 3.4, the results for plastic collision B1-B4 is not fully identical between the 
2DOF and the classic theory, as they are for the elastic collision A1-A4 in Table 3.2. 
This is due to the fact that it is difficult to obtain a fully plastic collision with a 2DOF 
system, as can be seen in Table 3.4 where the coefficient of restitution is e ≠ 0 for the 
2DOF systems. The coefficient of restitution e is for the 2DOF system calculated 
according to equation (2.27), whereas for the classic impact theory it is one of the 
input data. In this section is a time step h = 0.1 ms used, however, the results are 
relatively close but can be improved further by using a smaller time step. 
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Table 3.4 Comparison of results between the 2DOF system and the classic impact 

theory with plastic response, collision B1-B4. 

Case 
e 

[-] 

v0 

[m/s] 
v1 

[m/s] 

v2 

[m/s] 
Ek,0 

[kJ] 
Ek,tot 
[kJ] 

Collision B1 

2DOF 0.001 27.80 4.61 4.64 580 97 

Classic 
theory 

0 27.80 4.63 4.63 580 97 

Collision B2 

2DOF 0.001 27.80 18.52 18.55 5 796 3 864 

Classic 
theory 

0 27.80 18.53 18.53 5 796 3 864 

Collision B3 

2DOF 0.001 27.80 4.44 4.67 580 97 

Classic 
theory 

0 27.80 4.63 4.63 580 97 

Collision B4 

2DOF 0.001 27.80 18.52 18.55 5 796 3 864 

Classic 
theory 

0 27.80 18.53 18.53 5 796 3 864 

In Figure 3.9, displacement u, velocity v, internal resistance R and impulse I are 
illustrated as a function of time t for collision B1. From Figure 3.9a and Figure 3.9b it 
can be confirmed that the collision is plastic since v1 ≈ v2 and the curves for u1 and u2 
are more or less parallel. There is a small difference between v1 and v2 which can be 
reduced further by a reduced time step h. In Figure 3.9c it can be observed that the 
spring works plastically because R1 holds a constant value of R1,max during the whole 
collision, and then after the collision, the spring stops to act and R1 = 0. In 
Figure 3.9d, the transfer of impulse from body 1 to body 2 can be confirmed. It is also 
possible to see that the total impulse is conserved and holds a constant value for 
I1 + I2. All four graphs of Figure 3.9 show that the collision lasts for approximately 
0.14 s. For corresponding results for collision B2-B4, see Appendix B.2. 
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a) b) 

 

c) d) 

Figure 3.9 Response for collision B1 with a time step of h = 1 ms 

a) displacement u, b) velocity v, c) internal resistance R, and 

d) impulse I. 

In Figure 3.10 the total kinetic energy Ek,tot in the positive direction is illustrated as a 
function of time t for collision B1-B4. As can be seen, the initial kinetic energy is ten 
times larger for collision B2 and B4 than for collision B1 and B3, which is correct 
since the mass of body 1 is ten times larger for the former two. The reason that 
collision B2 and B4 takes a longer time than collision B1 and B3 is also due to the 
difference in mass, and the reason that collision B2 takes a longer time than 
collision B4 is the lower maximum internal resistance R1,max for collision B2. It is also 
possible to observe that a large portion of the kinetic energy is transformed into 
potential energy during the collision, as it should for a plastic collision. 
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a) b) 

Figure 3.10 Change in kinetic energy Ek,tot in the positive direction of body 2 during 

a) collision B1 and B3, and b) collision B2 and B4. 

In Figure 3.11 the internal work Wi of the spring is illustrated as a function of time t 
for collision B1-B4. As can be observed in Figure 3.11a, body 1 do not move in the 
opposite direction compared to body 2 after the collision since there is no loss in 
internal work Wi during the final phase of the collision. This happens despite body 1 
has a lower mass than body 2, and indicates a plastic collision. It can also be observed 
that collision B1 and B2 has lower stiffness k1 than collision B3 and B4 since the 
durations of the collisions are greater. 

 

a) b) 

Figure 3.11 Change in internal work Wi during a) collision B1 and B3, and 

b) collision B2 and B4. 

As for the elastic analysis, smaller time steps h for the numerical integration gives 
results closer to the classic impact theory and here a time step of h = 1 ms is used. The 
importance of a valid time step is even more noticeable for the plastic collisions than 
for the elastic collisions, because when larger time steps are used, a large difference 
between the velocities v1 and v2 is received, but for a plastic collision v1 should be 
equal to v2 after the collision. Figure 3.12a shows a displacement of body 2 that is 
greater than the displacement of body 1, i.e. u2 > u1 after the collision. It can also be 
observed in Figure 3.12b that the velocity v1 and v2 are far from equal after the 
collision when a time step of h = 25 ms is used. These type of errors can occur when a 
to large time step h is used. The graphs in Figure 3.12 where a time step of h = 25 ms 
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is used can be compared to the more accurate results presented in Figure 3.9 where a 
time step of h = 1 ms is used. 

 

a) b) 

Figure 3.12 Response for collision B1 with a to large time step of h = 25 ms 

a) displacement u, and b) velocity v. 

 

3.2.4 Elasto-plastic collision 

As for the elastic and plastic 2DOF collision analysis without barrier in Section 3.2.2 
and 3.2.3, the corresponding elasto-plastic study is also carried out for different 
collision cases. Two different collision cases based on input data that gives the most 
interesting elasto-plastic responses, from the previous collisions in Section 3.2.2 and 
3.2.3, are analysed here. The input data for the two collisions is presented in Table 3.5 
where collision C1 has the same stiffness k1 as collision A1, the same internal 
resistance force R1 as collision B1, and the same masses as both. Collision C2 gains 
its input data from collision A2 and B2 in a corresponding way. 

Table 3.5 Input parameters for collision C1 and C2 with elasto-plastic response 

for the 2DOF system. 

Case 
v0 

[m/s] 
R1,max 
[kN] 

k1 
[kN/m] 

m1 
[kg] 

m2 
[kg] 

Collision C1 27.8 250 100 1 500 7 500 

Collision C2 27.8 250 100 15 000 7 500 

As for the corresponding elastic and plastic analysis, the two bodies involved in the 
collision only interact when there is a compressive force in the spring, which means 
that the tension response of the spring is excluded. This is done by using R1 = k ∙ ∆u 
until R1 = R1,max and then a constant internal resistance R1 when the deformation ∆u is 
positive, and no resistance when the deformation is negative, see Figure 3.13. 
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R1,max 

R 

k1 

∆u = u1 – u2 

 ∆uel 

 

 

Figure 3.13 Illustration of a case with elasto-plastic response which is a 

combination of an elastic case with a spring stiffness k1 that varies with 

the deformation ∆u and a plastic case where the internal resistance R1 

is constant for the deformation ∆u. 
The two collisions are analysed with a 2DOF elasto-plastic model and the coefficient 
of restitution e is calculated with equation (2.27). The different e is then used with the 
classic impact theory, and the results in Table 3.6 are obtained. As for the elastic and 
plastic analysis, smaller time steps h for the numerical integration gives results closer 
to the classic impact theory, therefore a time step of h = 1 ms is used. 

Table 3.6 Comparison of results between the 2DOF system and the classic impact 

theory with elasto-plastic response, collision C1 and C2. 

 
Collision C1 Collision C2 

2DOF Classic theory 2DOF Classic theory 

e [-] 0.804 0.804 0.402 0.402 

v0 [m/s] 27.80 27.80 27.80 27.80 

v1 [m/s] -14.00 -13.99 14.81 14.81 

v2 [m/s] 8.36 8.36 25.99 25.99 

Ek,0 [kJ] 580 580 5 796 5 796 

Ek,tot [kJ] 262 262 4 177 4 177 

In Figure 3.14, displacement u, velocity v, internal resistance R and impulse I are 
illustrated as a function of time t for collision C2. Collision C2 has a coefficient of 
restitution of e ≈ 0.4, which means that it has 40 % elastic behaviour and 60 % plastic 
behaviour. In Figure 3.14a and Figure 3.14b it is hard to see that the collision acts 
more in a plastic than in an elastic manner. But it can be observed that the collision is 
not elastic because in that case, a much larger difference between v1 and v2 would 
have been obtained and it is not plastic since then v1 and v2 would have had the same 
value. Figure 3.14c shows that the two bodies respond in an elasto-plastic manner 
since the response follows Figure 3.13 as 
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uu        ukR

elmax1,1

el11

,

,
 (3.1) 

In Figure 3.14d, the transfer of impulse from body 1 to body 2 can be confirmed. It is 
possible to observe that the total impulse is conserved and holds a constant value for 
I1 + I2. All four graphs of Figure 3.14 show that the collision lasts for approximately 
0.95 s. For corresponding results for collision C1, see Appendix B.3. 

 

a) b) 

 

c) d) 

Figure 3.14 Response for collision C2 a) displacement u, b) velocity v, c) internal 

resistance R, and d) impulse I. 

In Figure 3.15 the total kinetic energy Ek,tot in the positive direction is illustrated as a 
function of time t for collision C1 and C2. Similarly to the elastic and plastic analysis, 
the initial kinetic energy is ten times larger for collision C2 than for collision C1, 
which is correct since the mass of body 1 is ten times larger in collision C2 than in 
collision C1. The difference in mass is also one reason that collision C2 has a longer 
duration than collision C1, another reason is the difference in coefficient of 
restitution e. 

For collision C1, a large portion of the total kinetic energy Ek,tot is lost before the 
minimum value in Figure 3.15 is reached. After the minimum value of the total 
kinetic energy is reached, the collision regains a portion of its kinetic energy again. 
This proves that it is a mixture of elastic and plastic response. The same could be said 
of collision C2, but in this case, not all of the kinetic energy in the positive direction is 
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transferred to internal energy Wi, but also to kinetic energy in the negative direction, 
see Figure 3.15, Figure 3.16 and Table 3.6. 

 

Figure 3.15 Change in kinetic energy Ek,tot in the positive direction of body 2 during 

collision C1 and C2. 

In Figure 3.16 the internal work Wi of the spring is illustrated as a function of time t 
for collision C1 and C2. As can be observed for collision C1, body 1 loses internal 
energy in the final phase of the collision, this means that body 1 is moving in the 
opposite direction of body 2 after the collision, which indicates that the collision is not 
fully plastic. 

 

Figure 3.16 Change in internal work Wi during collision C1 and C2. 
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3.3 Elastic collision with barrier 

In the collision impacts that are of interest in this thesis, the structural member which 
is symbolized by body 2, is attached to a larger system. Therefore, a barrier in the 
form of an additional spring attached to body 2 at one side and fixed at the other is 
introduced, as illustrated in Figure 3.17. 

 

m1 m2 

v0 v = 0 v0 

m1 m2 

k1 

v = 0 

k2 k1 
 

Figure 3.17 Illustration of how a 2DOF system without barrier is transformed into a 

system with a barrier. 

The structural response of body 1 during a collision, is significant for what kind of 
load F2(t) that is acting on body 2, and therefore also what type of dynamic response 
that can be expected from body 2. The two extremes are as in Section 3.2 elastic and 
plastic response, with elasto-plastic response in between. 

If an elasto-plastic analysis is considered, a very large number of collision scenarios 
may be obtained, even if only one of the bodies is studied with elasto-plastic response. 
This can be complicated to describe thoroughly and it demands more input data in the 
form of stiffness k and internal resistance R. Hence, in this section only an elastic 
response for both bodies is considered. The elasto-plastic response of reinforced 
concrete structures, is instead treated in Chapter 6. 

The shape of the load acting on body 2 F2(t) that is created when body 1 collides with 
body 2 can have a great importance for the response of body 2. How this shape affects 
the resulting response is complex and depends on the properties of both the involved 
bodies. As an example, it is not only the mass ratio m1 / m2 and the load F2(t) that 
affects the structural response in form of the internal resistance for spring 2 R2, but 
also the frequency ratio f1 / f2, Johansson (2014). 

The two bodies involved in the collision interact only when there is a compressive 
force in the spring of body 1, which means that the tensile response of the spring must 
be excluded. Hence, the stiffness of spring 1 k1 has a linear elastic response while the 
deformation ∆u is positive and no stiffness when the deformation is negative. The 
response of spring 2 depends solely on the displacement of body 2 u2 and has a linear 
elastic response for both the positive and the negative displacement. The reason for 
this is that body 2 corresponds to a structural member that is connected to a larger 
structural system and therefore strives to return to its original state, see Figure 3.18. 
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R1 R2 

k1 
k2 

k2 

∆u = u1 – u2 

 

u2 

 

 

Figure 3.18 Illustration of how the spring stiffness k1 varies with the deformation ∆u 
and how the spring stiffness k2 varies with the deformation u2 for an 

elastic case. 

The method used here is based on converting the dynamic load to an equivalent static 
load F2,sta. An advantageous tool is to determine a load factor ȕel which describes the 
relation between the dynamic load F2,dyn and the equivalent static load F2,sta as 

el2,elsta2, FF    (3.2) 

F2,el is the maximum dynamic load, derived for a collision with a fully stiff member, 
so called hard impact, and it is determined by setting internal work and the kinetic 
energy that acts on body 1 equal to Ek,0 = Wi,el,1, where the kinetic energy is 

2

2
0

,0k

mv
E   (3.3) 

The area under the curve in Figure 3.19 is the internal work 

1

el1el11

1eli
k

Ruk
W

22

2

,

2

,
,,   (3.4) 

 

u 

R 

Wi,el,1 

u1,el 

k1 
R1,el 

 

Figure 3.19 Force-displacement relation showing the internal work Wi,el,1 as the 

area under the curve. 

By putting the dynamic load equal to the internal resistance F2,el = R1,el, the maximum 
dynamic load can be expressed as 
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110el2 mkvF ,  (3.5) 

The equivalent static load F2,sta also corresponds to the internal resistance of body 2 

R2, described as 

2el22sta2 ukRF ,,   (3.6) 

The load factor ȕel in equation (3.2) can therefore be expressed as 

el2,

2

el
F

R
  (3.7) 

The relation between the load factor ȕel and the frequency ratio f1 / f2 for different 
mass ratio m1 / m2 can be seen in Figure 3.20. The input values for the curves based 
on data from Johansson (2014), are presented in Appendix E. 

 

Figure 3.20 Relationship between load factor ȕel and frequency ratio f1 / f2 for 

different mass ratio m1 / m2, based on Johansson (2014). Circles in 

diagram mark cases that are further studied in this section. 

The marked cases in Figure 3.20 are selected mass ratios m1 / m2 which are further 
investigated in this section. The input values for the selected ratios are listed in 
Table 3.7. These collisions are based on the collisions in Section 3.2.2, with the same 
initial velocity v0 = 27.8 m/s and the same masses, but with a different stiffness k1 and 
now also k2. 

If the collision cases in Table 3.7 are compared to the more practical collision cases 
studied in Chapter 6, the stiffness k1 and k2 in this section can seem to be of a very 
small magnitude and large displacements are obtained. However, from the results in 
this section, one can still gain the understanding of elastic collisions with barriers. 
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Table 3.7 Input parameters for collision D1-D4 with elastic response for the 

2DOF system with initial velocity v0 = 27.8 m/s. 

 
Collision 

D1 

Collision 
D2 

Collision 
D3 

Collision 
D4 

k1 [kN/m] 100 1 000 400 4 000 

k2 [kN/m] 2 000 2 000 2 000 2 000 

m1 [kg] 1 500 15 000 1 500 15 000 

m2 [kg] 7 500 7 500 7 500 7 500 

Mass ratio m1 / m2 [-] 0.2 2 0.2 2 

Frequency ratio f1 / f2 [-] 0.5 0.5 1 1 

Load factor ȕel [-] 1.65 1.15 1.42 0.69 

The displacement u, velocity v, impulse I and internal resistance R for both bodies 
during collision D4 is presented in Figure 3.21. From Figure 3.21c it can be seen that 
the impact duration is approximately 0.3 s. Spring 2 has an elastic response at tension, 
as shown in Figure 3.18, which is why the response of body 2 after the impact is a 
wave motion, see Figure 3.21. Accordingly, body 2 will sway back and forth with no 
reduced effect since no damping effect is regarded. As can be seen from the internal 
resistance R for body 1 in Figure 3.21c, spring 1 endures two separate collisions, a 
phenomenon which happens due to k1 and m1 being much larger than k2 and m2. This 
double collision is also observable in Figure 3.21a where u1 – u2 ≤  0 at t ≈ 0.15 s. 

In Figure 3.21c, the dynamic load F2,el(t) from a hard impact is added to the graph to 
illustrate the difference compared to R1(t) for collision D4. 
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a) b) 

 

c) d) 

Figure 3.21 Response for collision D4 a) displacement u, b) velocity v, c) internal 

resistance R and dynamic load F2,el, and d) impulse I. 

The change in internal energy Wi and kinetic energy Ek for both bodies during 
collision D4 is presented in Figure 3.22. The wave motion which appears for body 2 
after the impact is clearly seen in Figure 3.22b, where the internal work Wi,2 is zero 
when the kinetic energy Ek,2 is maximum and vice versa. 

 

a) b) 

Figure 3.22 Response for collision D4 a) internal work Wi,1 and kinetic energy Ek,1 

for body 1, and b) internal work Wi,2, external work We,2 and kinetic 

energy Ek for body 2. 

-4

-2

0

2

4

0.0 0.1 0.2 0.3 0.4 0.5

D
is

pl
ac

em
en

t,
 u

 [
m

]

Time, t [s]

Body 1
Body 2

-30

-20

-10

0

10

20

30

0.0 0.1 0.2 0.3 0.4 0.5

V
el

oc
it

y,
 v

[m
/s

]

Time, t [s]

Body 1
Body 2

-6
-4
-2
0
2
4
6
8

0.0 0.1 0.2 0.3 0.4 0.5

F
or

ce
s,

 F
,

R
 [

M
N

]

Time, t [s]

R Body 1
R Body 2
F2el

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.0 0.1 0.2 0.3 0.4 0.5

Im
pu

ls
e,

 I
 [

M
N

s]

Time, t [s]

Body 1
Body 2

0

1

2

3

4

5

6

0.0 0.1 0.2 0.3 0.4 0.5

E
ne

rg
y,

[M
J]

Time, t [s]

Wi1
Ek1

0

1

2

3

4

5

6

0.0 0.1 0.2 0.3 0.4 0.5

E
ne

rg
y,

[M
J]

Time, t [s]

Wi2
We2
Ek2



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:87 
49 

The phenomena seen from collision D4 due to spring 1 being fully compressed before 
spring 2 starts to compress is also seen in Figure 3.23. There is a tendency for the 
same phenomena for collision D2, but not as clear. Collision D1 and D3 shows no 
such thing and this are due to the relatively low stiffness of spring 1 k1 and low mass 
m1. The time of the four impacts are clearly shown in Figure 3.23, where it can be 
observed that the internal resistance of body 1 R1 is zero after the collision. 

 

a) b) 

Figure 3.23 Internal resistance of body 1 R1 for a) collision D1 and D3, and 

b) collision D2 and D4. 

The internal resistance of body 2 for collision D1-D4 is presented in Figure 3.24. 
After the collision all four collisions shows a wave motion for body 2. 

 

Figure 3.24 Internal resistance of body 2 R2 for collision D1-D4. 

For corresponding diagrams for collision D1-D3, see Appendix B.4. 

 

0.0

0.3

0.6

0.9

0.0 0.1 0.2 0.3 0.4 0.5

In
te

rn
al

 r
es

is
ta

nc
e,

 R
 [

M
N

]

Time, t [s]

Collision D1
Collision D3

0

2

4

6

8

0.0 0.1 0.2 0.3 0.4 0.5

In
te

rn
al

 r
es

is
ta

nc
e,

 R
 [

M
N

]
Time, t [s]

Collision D2
Collision D4

-3

-2

-1

0

1

2

3

4

5

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

In
te

rn
al

 r
es

is
ta

nc
e,

 R
[M

N
]

Time, t [s]

Collision D1
Collision D2
Collision D3
Collision D4



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:87 
50 

4 Transformation of Structural Member to SDOF 

System 

4.1 Transformation of beams to SDOF systems 

4.1.1 Orientation 

In Chapter 3, collisions and impacts are analysed using 2DOF-models. However, if 
these mass-spring models should be valid, they must first be transformed from the real 
structure that is of interest. 

If a beam with linear elastic material properties and retained boundary conditions is 
loaded with a point or distributed static load, the displacement shape of the beam is 
always the same no matter what the magnitude of the load is. This enables the 
possibility to describe the displacement along the entire beam with only one 
displacement us in a certain location of the beam, see Figure 4.1. A beam with plastic 
material properties can be described in the same way even though the displacement 
shape is different. 

 

us us ui ui 

 

F(t) 

R(u) 

m u  

 

Figure 4.1 A change in displacement of a beam with a factor α means that the 
constant shape of displacement is scaled along the whole beam with 

this factor. 

This location of the beam is called the system point and the properties of the SDOF-
model should be adjusted so that 

sSDOF uu   (4.1) 

It is common to have the system point located at the point where the displacement is 
the largest, or at the centre of the beam, Johansson and Laine (2012). In this thesis 
point loads are of interest and the system point is chosen to be at the point of loading. 
The transformation to a SDOF system from a beam is made through applying a mass 
m, a resisting force R(u), and an external load F(t), see Figure 4.2. As discussed in 
Section 2.4, the damping effect is neglected in this thesis. 

 

EIb 

q(x,t) 

us 
mb 

l 
x 

 

 
 

 
 

 

u = us 

F(t) 

R(u) 

m 

 

Figure 4.2 Illustration of how to transform a beam to an equivalent SDOF system. 
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For linear elastic response with R(u) = k∙u, a relation between the equivalent SDOF 
system and the beam can be made using different transformation factors ț 

bm mm    (4.2) 

bk kk    (4.3) 

bF FF    (4.4) 

where mb, kb and Fb is the mass, stiffness and external load of the beam. By using this, 
the dynamic equation of motion, equation (2.15), can be written as 

 tFukum bFbkbm    (4.5) 

For a system with plastic or elasto-plastic response, it can instead be written as 

   tFuRum bFbkbm    (4.6) 

where Rb(u) describes the static response of the beam. The transformation factors ț 
are derived on the basis of the theory of energy conservation where the kinetic energy 
of the mass m, the work done by the external force F(t) and the internal resistance R 
should be equal between the two systems, Johansson and Laine (2012). 

 

4.1.2 Conservation of kinetic energy 

To conserve the kinetic energy Ek between the two systems illustrated in Figure 4.2 
the energy can be written as 

   











lx

x

s

k dx
xvxmvm

E
0

22

22
 (4.7) 

where vs is the velocity at the system point, m’(x) is the mass per unit length and v(x) 
is the velocity per unit length. By using that 

t

u
v s

s 


  (4.8) 

and 

   
t

xu
xv




  (4.9) 

where ∆us and ∆u(x) are the displacements at the system point and along the beam, 
equation (4.7) for a beam with constant mass per unit length m’(x) = m’, can be 
expressed as 
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 





lx

x

b

s dxxu
l

m
um

0

22
 (4.10) 

The transformation factor țm can be derived by combining equation (4.2) and (4.10) 

 






lx

x s

m dx
u

xu

l 0
2

21
 

(4.11) 

 

4.1.3 Conservation of external work 

To conserve the external work We between the two systems illustrated in Figure 4.2 
the energy can be written as 

   





lx

x

se dxxuxquFW
0

 (4.12) 

where q(x) is the load per unit length. The external force for a beam Fb with constant 
uniformly distributed load q(x) = q can be expressed as 

  









lx

x

b

lx

x

b dx
l

F
dxxqF

00

 (4.13) 

With this inserted in equation (4.12) and by using equation (4.4), the transformation 
factor țF can be expressed as 

 






lx

x s

F dx
u

xu

l 0

1  (4.14) 

For an arbitrary distributed load which acts at x = x1 to x = x2 the transformation factor 
țF can be expressed as 

 






2

1

xx

xx s12

F dx
u

xu

xx

1  (4.15) 

In the case of a beam subjected to a point load, equation (4.12) can be rewritten as 

sbse uFuFW   (4.16) 

and the transformation factor țF will, with equation (4.4), become 

1
s

F
u

u  (4.17) 
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4.1.4 Conservation of internal work 

The internal work Wi for a linear elastic material can be written as 

       















lx

x

shears

i dxxuxM
GA

xV

EA

xNku
W

0

222

2

1

2


 (4.18) 

where E is the Young’s modulus, G is the shear modulus, ȕshear is a factor to consider 
the shear stress, A is the sectional area, N(x) is the normal force, V(x) is the shear 
force, M(x) is the moment and u′′(x) is the curvature of the beam, 
Johansson and Laine (2012). The contribution from the normal and shear forces are in 
general small and can be neglected, and equation (4.18) can thus be simplified to 

   





lx

x

s

i dxxuxM
ku

W
0

2

2

1

2
 (4.19) 

By combining this with equation (4.3) the transformation factor țk can be written as 

   



 




lx

x sb

k dx
uk

xuxM

0
2

  (4.20) 

The stiffness of a beam with elastic response can be determined in the same way as 
for a spring, which means using the elastic correlation between load and 
displacement. For an elastic beam subjected to a point load the correlation can be 
written as 

sbb ukF   (4.21) 

which combined with equation (4.20) gives 

   



 



lx

x sb

k dx
uF

xuxM

0

  (4.22) 

where Fb is derived from equation (4.13). 

 

4.1.5 Summary 

According to Biggs (1964), the transformation factors for internal and external work 
are equal, i.e. 

Fk    (4.23) 

If using equation (4.23) and dividing equation (4.6) by the transformation factor țF, 
the dynamic equation of motion can be written as 

 tFukum bb

F

k
b

F

m 






  (4.24) 
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By introducing a combined transformation factor țmF 

F

m
mF 

   (4.25) 

equation (4.24) can be rewritten as 

 tFukum bbbmF   (4.26) 

This means that it is only the mass of the beam mb that is affected by a transformation 
factor țmF when transforming a beam to a SDOF system. 

In the case of a beam subjected to a point load the transformation factor țmF according 
to equation (4.17) can be expressed as 

mmF    (4.27) 

 

4.2 Determination of transformation factors for a beam 

4.2.1 Orientation 

Derivation of the transformation factors țm and țF for beams for different load cases 
with elastic response is done in Johansson (2014) and in Asplund and 
Steckmest (2014). The transformation factors used in this thesis for beams are 
presented in Appendix D.1. 

 

4.2.2 Elastic response for a point load 

The displacement u(x) of a simply supported beam with an elastic response subjected 
to a point load is defined according to Lundh (2000) as 
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 (4.28) 

where x, l, α, ȕ, Fb and EIb are illustrated in Figure 4.3. 

 

Fb(t) 

us 

mb, EIb 

l 

x ȕl  l 

 

Figure 4.3 Illustration of a simply supported beam with elastic response subjected 

to a point load. 
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The displacement at the system point us = u(α∙l) can be written as 

22
3

3


b

b
s

EI

lF
u   (4.29) 

By inserting equation (4.28) and (4.29) in equation (4.11) and using the fact that the 
transformation factor țF,el is equal to one for cases with a beam subjected to a point 
load, the following țmF,el can be derived as 

If equation (4.21) and (4.29) is combined, the beam stiffness kb can be written as 

223

3

l

EI
k b

b   (4.31) 

As can be seen from equation (4.31), a smaller length of the beam l gives a much 
higher stiffness and vice versa, since it is to the power of three. The stiffness also 
increases rapidly when the load acts closer to the supports, when either α or ȕ is close 
to zero, see Asplund and Steckmest (2014). 

 

4.2.3 Plastic response for a point load 

For a simply supported beam with plastic response the displacement u(x) varies 
linearly when subjected to a point load, see Figure 4.4. 
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(4.30) 
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Figure 4.4 Illustration of a simply supported beam with plastic response subjected 

to a point load. 

If the displacement u(x) is stated as a function of us instead of the force Fb, it can be 
written as 
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By inserting equation (4.32) in equation (4.11) and using the fact that the 
transformation factor țF,pl is equal to one for a case with a beam subjected to a point 
load, țmF,pl can be written as 

 

4.3 Transformation of slabs to SDOF systems 

4.3.1 Orientation 

The transformation of a slab into a SDOF system is done similarly to the 
transformation of beams done in Section 4.1. The equation of motion can be written 
according to equation (4.26) as 
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is the transformation factor handling both the mass and the force. The transformation 
factor for one-way slabs is the same as for beams. Whilst the properties for beams and 
one-way slabs can vary in the longitudinal direction, the properties for two-way slabs 
can vary in both longitudinal and transversal direction. This means that the derivation 
of the transformation factors for two-way slabs must be done for two directions. 

 

4.3.2 Conservation of kinetic energy 

To conserve the kinetic energy Ek between a slab and a 2DOF system, the energy can 
be written as 
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where vs is the velocity at the system point, m’(x,y) is the mass per unit length and 
v(x,y) is the velocity per unit length. By using that 
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where ∆us and ∆u(x,y) are the displacements at the system point and along the slab, 
equation (4.36) for a slab with constant mass m’(x,y) = m’, can be expressed as 
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By combining 

slm mm    (4.40) 

and equation (4.39) it is possible to express the transformation factor țm as 
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4.3.3 Conservation of external work 

To conserve the kinetic energy We between a slab and a 2DOF system the energy can 
be written as 
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where q(x,y) is the load per unit length. The external force Fsl for a slab with constant 
uniformly distributed load q(x,y) = q can be expressed as 
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By combining 

slF FF    (4.44) 

with equation (4.42) and (4.43) it is possible to express the transformation factor țF as 
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For a constant distributed load q(x,y) = q, with an arbitrary area of distribution which 
acts at x = x1 to x = x2, and y = y1 to y = y2, the transformation factor țF can be 
expressed as 
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As for a beam subjected is the transformation factor țF = 1 for a slab subjected to a 
point load. 

 

4.3.4 Conservation of internal work 

As for beams the transformation factors regarding internal and external work are 
equal, according to Biggs (1964) 

Fk    (4.47) 

 

4.4 Derivation of transformation factors for a slab 

4.4.1 Orientation 

A slab is significantly more complex than a beam, which gives a multitude of 
combinations regarding geometry, boundary conditions and placement of the load. 
With regard to this, only a limited number of combinations are investigated and only 
for a quadratic slab. Three load cases are chosen for further evaluation and the slab is 
modelled as simply supported on all four sides. The slab and the three load cases are 
presented in Figure 4.5. Unlike for beams, the transformation factors for slabs cannot 
be as easily derived analytically and a numerical FE analysis is therefore used instead. 
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Figure 4.5 Illustration of the points for the applied point load at the reinforced 

concrete slab which is used for derivation of the transformation factors 

țmF. The points are defined using the length factors αx and αy and the 

simply supported quadratic slab has the side length l. 

 

4.4.2 Elastic response for a point load 

The FE analysis for the evaluation of the transformation factors in this thesis for cases 
with elastic response uses shell elements and is described more thoroughly in 
Chapter 5. Because of the shell elements being sensitive to stress concentrations, the 
point load is distributed over a small area, which is described more in detail in 
Section 5.4. This will influence the value of the transformation factor țF to a value 
less than one, i.e. țF < 1. The transformation factors are numerically derived 
according to Section 4.3 from FE analyses, see Appendix H.2. The derived 
transformation factors for the three load cases are presented in Table 4.1. The length 
factors αx and αy are defined as illustrated in Figure 4.5. Load case 1-3 is used for the 
remaining slab analysis conducted in this thesis. 

Table 4.1 Transformation factors țm, țF, țmF, slab stiffness ksl and displacement at 

the system point us for load case 1-3 with a load of 100 kN. 

 Load case 1 Load case 2 Load case 3 

αx [-] 0.5 0.5 0.25 

αy [-] 0.5 0.25 0.25 

țm [-] 0.200 0.231 0.236 

țF [-] 0.987 0.982 0.977 

țmF [-] 0.203 0.235 0.241 

ksl [MN/m] 10.79 15.94 22.02 

us [mm] 9.27 6.27 4.54 

Ȗsl [m/GN] 655.5 655.5 655.5 

It should be noted that these transformation factors are unique for these load cases and 
only for quadratic slabs with elastic response. The values of the transformation factors 
are also unique for the length-thickness ratio l / t of the slab. In this thesis, a quadratic 
slab with length l = 5.6 m and thickness t = 0.2 m is used which gives a length-
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thickness ratio l / t = 28. In fact, the values of the transformation factors are valid for 
an arbitrary slab with the same length-thickness ratio, Johansson (2014). 

In Johansson (2014), transformation factors and slab stiffness are derived and 
presented for different load cases and different slabs. The values of țmF in Table 4.1 
differ a bit from the corresponding values in Johansson, where a length-thickness ratio 
of 20 is used. However, the difference between the transformation factor țmF 
presented in Table 4.1 and in Johansson is approximately 0.4 %, 1.4 % and 3.2 % for 
load case 1-3 and can arguably be considered negligible. This difference can also be a 
result of the difference in the number of element used in each model. 

As for the beam, țmF and ksl grows larger when the load and the system point are 
closer to the support, as can be seen in Table 4.1. It should be noted that ksl is unique 
for these set of properties and load cases. However, it is possible to express any slab 
stiffness without having to do a FE analysis for cases with an elastic response of the 
slab, Johansson (2014). The equivalent stiffness k2 of an arbitrary slab can be 
calculated as 

sl

2

sl

2 kk 



 (4.48) 

where 

3

2

tE

l


  (4.49) 

is a factor which considers the length of the slab l, the Young’s modulus E and the 
slab thickness t. The factor Ȗsl is the ratio for the slab which ksl is calculated for while 
Ȗ2 is the ratio for an arbitrary quadratic slab. 

 

4.4.3 Theoretical plastic response for a point load 

For a simply supported slab with plastic response, the displacement u(x,y) varies 
linearly when subjected to a point load as handled in Section 2.8.3, see Figure 4.6. 
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Figure 4.6 Illustration of a simply supported slab with plastic response subjected 

to a point load a) section, and b) plane. 

The plastically deformed slab illustrated in Figure 4.6 has the shape of a pyramid and 
țm,pl can be derived analytically with equation (4.41). To be able to solve the integral 
in this equation, the slab is divided into four parts according to Figure 4.7. 
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Figure 4.7 Illustration of a simply supported slab with plastic response divided 

into four areas A1, A2, A3 and A4. 

If the displacement u(x,y) is stated as a function of us instead of the force Fsl, it can be 
written as 
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By inserting equation (4.50) into equation (4.41) and using the fact that the 
transformation factor țF,pl = 1 for a case with a slab subjected to a point load, țmF,pl 
can be written as 

Area 2, 3 and 4 are calculated in the same fashion and by using the fact that 
αx + ȕx = αy + ȕy = 1, țmF,pl becomes 
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The integral for part A1 becomes 
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5 FE Modelling 

5.1 Orientation 

This chapter covers how the incoming object and the resisting structure are modelled 
with FE software for this thesis. It is the FE software ADINA (2014) 900 Nodes 
Version 9.0 that is used and as the name implies, a maximum of 900 nodes can be 
used. The slab geometry and element size examined is largely based on this limit. 

During the uncracked state, state I, of the reinforced concrete behaviour the 
reinforcement has a small influence on the total stiffness and the beam can be 
simplified to a solid concrete beam. However, in the cracked state, state II, the 
reinforcement has a large influence on the stiffness and must therefore be considered. 
In this thesis, the focus is not on modelling each state of the concrete behaviour 
thoroughly, thus the more roughly estimated elasto-plastic behaviour discussed in 
Section 2.8 is enough. 

Based on this, it is sufficient to model the elastic part of the reinforced concrete as one 
equivalent material based on state II, instead of modelling the reinforcement and 
concrete separately in the commercial software ADINA. In this thesis, the equivalent 
material is modelled with an equivalent Young’s modulus when shell elements are 
used, and manually implemented moment-curvature and torsion-twisting relations 
when beam elements are used. 

For the FE slab models of this thesis, both a shell element model and a beam grillage 
model are evaluated. The beam grillage model uses a grid with beams in two 
directions, where the beams are modelled with beam elements. The usage of shell and 
beam elements for slabs is more thoroughly described in Section 5.4 and Section 5.5. 

 

5.2 Equivalent Young’s modulus 

The cross-section defined in ADINA is the cross-section of state I, hence the moment 
of inertia I that is calculated by ADINA is II. Therefore, the input value for the 
Young’s modulus in ADINA is a reduced equivalent Young’s modulus Eeq so that the 
stiffness of state II is used. The equivalent Young’s modulus is calculated as 

cm

I

II

eq E
I

I
E   (5.1) 

where Ecm is the mean Young’s modulus of the concrete and II and III are the moments 
of inertia for state I and state II, respectively. The stiffness used by ADINA is then 

IIcmIcm

I

II

Ieqb IEIE
I

I
IEEI   (5.2) 

where EIb is the stiffness of the beam in state II. However, Young’s modulus is not an 
input to ADINA when using moment-curvature relations, which is explained further 
in Section 5.5.2. Hence, the equivalent Young’s modulus Eeq is only used for FE 
models modelled with shell elements. 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:87 
64 

5.3 Elasto-plastic response for the incoming object 

As described in Section 3.2.4, body 1 should have an elasto-plastic response in 
compression and no tensile stiffness. However, no element type in the commercial 
software ADINA (2014) can account for this. It is possible to model a non-linear 
elastic spring element in ADINA. A comparison between the response of body 1 
modelled with a 2DOF and a FE model using non-linear elastic spring element, is 
illustrated in Figure 5.1. In both Figure 5.1a and Figure 5.1b it can be observed that 
there has not occurred any plastic deformation, where the shape of the loading and the 
unloading stage is the same. The 2DOF model and the FEM model are giving 
identical results. 

 

a) b) 

Figure 5.1 Comparison between a 2DOF model and the corresponding FE model 

with a non-linear spring for the same case as the elasto-plastic case. 

a) Internal resistance R as a function of difference in displacement 

u1 - u2, and b) internal resistance R as a function of time t. 

To account for plastic deformations, a spring element cannot be used. For the plastic 
deformations, a truss element can instead be used, but it requires the same 
compressive and tensile properties. In order to be able to model the elasto-plastic 
response, and have different properties in compression and tension, a spring element 
is combined with a truss element. The spring element acts as a non-linear elastic 
member until the plastic limit is reached, whilst the truss element acts as an elasto-
plastic member, which account for plastic deformations, see Figure 5.2. 

0

100

200

300

400

500

0.0 0.5 1.0 1.5In
te

rn
al

 r
es

is
ta

nc
e,

 R
 [

kN
]

Displacement, u1 -u2 [m]

2DOF

FEM
0

100

200

300

400

500

0.0 0.1 0.2In
te

rn
al

 r
es

is
ta

nc
e,

 R
 [

kN
]

Time, t [s]

2DOF

FEM



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:87 
65 

∆u 

R1 

k1 

Spring element 

∆u 

R1 

k1 

Combined 

R1,max Truss element 

∆u 

R1 

Very stiff 

R1,max 

= 

 

Figure 5.2 Illustration of how the properties of a spring and truss element are 

combined to simulate the elasto-plastic behaviour of body 1. 

In Figure 5.3b it can be observed that there has indeed occurred a plastic deformation, 
where there is a different shape between the loading and the unloading stage. In 
Figure 5.3 the elasto-plastic response of the 2DOF and the FEM model can be 
observed and both models have identical response. 

 

a) b) 

Figure 5.3 Comparison between a 2DOF model and the corresponding FE model 

with elasto-plastic response of body 1 and elastic response of body 2 

with a time step of h = 0.3 ms. a) Internal resistance R as a function of 

difference in displacement u1 – u2, and b) internal resistance R as a 

function of time t. 

The truss element in ADINA is not fully plastic but rather elasto-plastic. It has a 
stiffness k which is chosen to be as large as possible for the model to be stable. Which 
is found to be approximately 1 GN/m for the cases in this thesis, which gives 
satisfying results as observed in Figure 5.3. 
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The choice of time step in ADINA is critical and can result in major differences. By 
using a time step of h = 0.3 ms, no visible difference between the 2DOF and the FE 
analysis will be seen, as can be observed in Figure 5.3. Whilst a time step of h = 1 ms 
will result in a noticeable difference between the two analyses as illustrated in 
Figure 5.4. The results even suggest that the FE analysis is modelled with an initial 
internal resistance, which of course is false. 

 

Figure 5.4 Comparison between a 2DOF model and the corresponding FE model 

with elasto-plastic response of body 1 and elastic response of body 2 

with a time step of h = 1 ms. 

The model with a non-linear elastic spring element without a truss element does not 
account for the plastic deformations and when compared to the elasto-plastic model 
there is a difference in the response of body 2. The displacement of body 2 u2 as a 
function of time for both models is illustrated in Figure 5.5. As can be observed, the 
main difference between the two models is during the unloading stage and after the 
collision. However, if the purpose of the analysis is to find the maximum value or the 
response after collision, it might be sufficient to model the incoming object with a 
non-linear elastic spring element. Although, it is uncertain if this model is valid if 
body 2 is subjected to multiple collisions after each other, since the plastic 
deformation then will have a larger influence. The model with a non-linear elastic 
spring element without a truss element is therefore not further used in this thesis. 

 

Figure 5.5 Comparison between the displacement of body 2 u2 for the FE model 

with a non-linear spring and the elasto-plastic case modelled with a 

spring and a truss. 
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5.4 Shell elements 

It is possible to model slabs with shell elements in the commercial software 
ADINA (2014) and it is shell elements that are used when deriving the transformation 
factors in Section 4.4. In this thesis, for all the FE models with shell elements, 28 x 28 
4-node shell elements are used together with a length-thickness ratio of l / t = 28 for 
the slab. Normally a Poisson’s ratio of υ = 0.2 is used for reinforced concrete. 
However, since beams deform only in one direction, υ = 0 is chosen throughout this 
thesis for better consistency between the shell element and beam grillage model which 
is treated in Section 5.5.1. 

However, there are some issues when using shell elements that must be taken into 
account. When applying a point load to a slab modelled with shell elements, an 
unreasonable large deformation will occur at the node where the load is applied, 
because of the shell elements being sensitive to high stress concentrations. To avoid 
this error the point load can be distributed over a small area as illustrated in 
Figure 5.6. In this thesis the area in which the point load is distributed over is chosen 
to have a side length of twice the element length c = 2le = 0.4 m. This is the smallest 
area that can be used if the centre of the distributed load should remain in the same 
point as where the point load is applied. 

 

c 

c 

 

Figure 5.6 Illustration of how a point load can be distributed over an area with a 

side length c. 

The difference in displacement at the system point us between applying the load as a 
static point load and as a static distributed point load is illustrated in Figure 5.7. Even 
though the difference seems to be small, it will have an influence of large magnitude 
since the displacement at the system point us is squared in the derivation of the 
transformation factor țm, see Section 4.1.2. For the models subjected to dynamic 
loads, the load is distributed in the same manner because otherwise a local instability 
in the node where the load is applied will occur for slabs with elasto-plastic response. 
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a) b) 

Figure 5.7 Comparison of the displacement u2 along a line described in the upper 

right hand corner, between a point load and a distributed point load. 

The maximum displacement illustrated is at the system point. For a) the 

whole slab, and b) magnified. 

When modelling slabs with plastic or elasto-plastic response in ADINA using shell 
elements, there will be an unintended increase of the moment capacity. This is due to 
that ADINA uses von Mises plastic theory and thereby automatically uses a Poisson’s 
ratio of υ = 0.5 during the plastic phase, no matter what input value that is given, 
Augustsson and Härenstam (2010). However, this phenomenon will not appear when 
using a beam grillage model, which is further discussed in Section 5.5.1. 

To be able to verify the beam grillage model, an elasto-plastic shell element model is 
made for comparison even though the problem with υ = 0.5 during the plastic phase 
still exists. In ADINA, the stress distribution is described by a polynomial of order six 
as illustrated in Figure 5.8b, Augustsson and Härenstam (2010). 

 

 

 

a) b) 

Figure 5.8 Illustration of the a) expected stress distribution with seven integration 

points, and b) stress distribution with seven integration points used by 

ADINA. 

The stress distribution in Figure 5.8b will result in a lower section modulus W and 
therefore a lower bending moment resistance than the stress distribution in 
Figure 5.8a, since MRd = W∙fy. To gain the same bending moment resistance as the 
stress distribution in Figure 5.8a, a modified yield stress fy,mod is used in ADINA. This 
modified yield stress can be expressed for rectangular homogenous cross section as 
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ymody ff

1

,   (5.3) 

where α is a correction factor. In this thesis is α = 0.231 used, which is derived in 
Augustsson and Härenstam (2010). 

 

5.5 Beam elements 

5.5.1 Beam grillage 

A grillage of beams using beam elements can be used when studying an elasto-plastic 
response of a slab. This simplified method uses a grid with beams in two directions, 
where the width of each beam wb is equal to the spacing between the beams as 
illustrated in Figure 5.9. 

 

ly 

wb 

lx 

t 

wb 

ly 

 

Figure 5.9 Illustration of the beam grillage model with evenly distributed beams in 

two directions creating a slab. 

It should be noted that this grid will cause the beams to overlap in each intersection of 
the nodal points. Hence, the beam grillage will have a mass which is twice the 
intended. The solution which is used in this thesis to solve this issue is to reduce the 
density ρ to half of the intended value. However, this will change the velocity of the 
propagating impulse wave c in the material, see equation (5.4), Carlsson and 
Kristensson (2012). However, the frequencies will remain unchanged and this 
solution will therefore be sufficient. 


E

c   (5.4) 

An important advantage with the beam grillage model is that the behaviour of the 
beam elements can be manually controlled by using moment-curvature and torsion-
twisting relations, which are treated in Section 5.5.3. This means that the problem 
during the plastic phase with shell elements, discussed in Section 5.4 with a Poisson’s 
ratio of υ = 0.5, will not exist. Another advantage with a beam grillage model is that, 
orthotropic behaviour, different reinforcement arrangement in different sections, and 
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different amount of reinforcement in top and bottom can be modelled. In this thesis 
the properties of the studied slab is equal for both directions and in all sections. 

The problem with stress concentration occurring when applying a point load using 
shell elements discussed in Section 5.4 can be avoided by using a beam grillage 
model. Therefore, the load for both the static analysis and the dynamic analysis are 
acting in one point for the beam grillage model, and does not need to be distributed. 

Beam elements with the beam width wb equal to the slab thickness t will give the best 
results for the FE analysis using beam grillage, Lim (2013). A reinforced concrete 
slab with a thickness of t = 0.2 m is used in this thesis, hence the beam width in the 
beam grillage model wb = 0.2 m. However, this can be seen as a disadvantage since it 
limits the width of the elements to the thickness of the slab. 

In Figure 5.10, the local coordinate system of the beam elements and the global 
coordinate system used by ADINA (2014) are illustrated. As can be observed, the 
local coordinate system uses r, s and t and the global uses X, Y and Z directions. The 
main local axes that are used for the beam grillage are r and s. It is around the s axis 
that the main bending occurs and it is around the r axis that torsion occurs. 

 

X 
Y 

Z 

t 

r 
s 

 

Figure 5.10 Illustration of the global and local coordinate system for beam 

elements. 

 

5.5.2 Moment-curvature relation 

To ensure that the model behaves as intended, the behaviour of the resisting structure 
can be modelled with moment-curvature and torsion-twisting relations, that are 
directly implemented in the commercial software ADINA (2014). This is only done 
for beams and slab models using beam elements. 

For the elasto-plastic cases, the moment-curvature relation used in ADINA is based 
on the principle which is discussed in Section 2.8 and illustrated in Figure 2.22. This 
means that the beam elements have linear elastic response with the stiffness of state II 
until the moment capacity of state III is reached, MRd. The corresponding curvature at 
this point is calculated as 

b

Rd

pl EI

M

r







 1

 (5.5) 

and for larger curvatures, the beam has a plastic response with no limit in curvature. 
This is illustrated in Figure 5.11. 
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Figure 5.11 Illustration of an ideal moment-curvature relation. 

In ADINA, it may be difficult to obtain convergence in the analysis if the inclination 
of the moment-curvature relation in the plastic region is zero. Therefore, a small 
inclination in this part is used which can be changed depending on how stable the 
model is. In Figure 5.12a, an applied load-displacement curve is presented from the 
results of an ADINA model for a beam where moment-curvature relation is used. This 
relation curve can be used to check if the beam behaves as it should and that the 
moment-curvature relation is valid. In Figure 5.12b the same applied load-
displacement curve is presented but with a longer displacement range. For such a 
relation curve it can also be observed how stable the model is by seeing how large the 
displacement can be before the model stops to work. If the model cannot handle a 
sufficiently large plastic displacement, a steeper plastic inclination can be used for the 
moment-curvature relation. As can be seen in Figure 5.12b, a small inclination is used 
for the plastic part. 

 

a) b) 

Figure 5.12 Illustration of the load-displacement relation used in the FE analysis 

a) curve illustrating elastic and plastic part, and b) same curve 

illustrating the full range of the displacement until the model collapses. 

The inclination of the plastic part of the moment-curvature relation which is used in 
this thesis is illustrated in Figure 5.13. This inclination results in a small error, but this 
is deemed to be small and negligible. When modelling slabs with beam elements the 
moment-curvature is used in a corresponding way. 
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Figure 5.13 Illustration of the inclination of the plastic part of the moment-

curvature relation used in the FE analyses. 

In this thesis, the yield curvature is (1/r)pl = 2.56∙10-3 m-1 for the beam and 
(1/r)pl = 17∙10-3 m-1 for the beams in the beam grillage model. 

 

5.5.3 Torsion-twisting relation 

As for moment-curvature relation, a torsion-twisting relation for the beam elements is 
manually added to the FE model in the commercial software ADINA (2014). The 
torsion-twisting relation is added as a fully linear relation that represents the cracked 
cross-section of state II. Torsional moments do not matter when analysing two 
dimensional beams, but for the beam grillage model it is essential. The torsional 
stiffness and its corresponding torsion-twisting relation is calculated and presented in 
Appendix G. A torsional stiffness which corresponds to the stiffness of a cracked 
cross-section TII(φ), is used in this thesis. The torsional stiffness can be expressed as 

)()(  I

I

II

II T
I

I
T   (5.6) 

where TI(φ) is the torsional stiffness of an uncracked cross-section and TII(φ) is the 
torsional stiffness of a cracked cross-section. 

In Table 5.1 the results for different ways to model the torsional stiffness are 
presented, where model 1 and 2 uses the torsional stiffness calculated by ADINA. For 
model 3 to 6 the torsion-twisting relation is manually inserted and the torsion used in 
the current model is defined as T(φ). The values in Table 5.1 are calculated from the 
reinforced concrete slab used in this thesis, where the moment of inertia ratio is 
III / II = 0.181, see Appendix G. The input data of the studied slab is more thoroughly 
presented in Section 6.2.1. 
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Table 5.1 Comparison between different methods to model the torsional stiffness 

T(φ). The values are based on the slab used in this thesis, presented in 

Section 6.2.1, where the moment of inertia ratio is III / II = 0.181. 

Model 
țmF 

[-] 
ksl 

[MN/m] 
us 

[mm] 
f 

[Hz] 

Model 1: Shell element 0.203 10.79 9.27 8.98 

Model 2: Beam grillage with default 
moment-curvature and torsion-twisting 

0.197 10.35 9.67 8.87 

Model 3: Beam grillage with 
T(φ) = TII(φ) = 0.181TI(φ) 0.196 10.31 9.70 8.87 

Model 4: Beam grillage with 
T(φ) = TI(φ) 0.168 28.77 3.48 15.44 

Model 5: Beam grillage with 
T(φ) = 0.1TI(φ) 0.203 8.27 12.10 7.87 

Model 6: Beam grillage with 
T(φ) = 0.001TI(φ) 0.212 5.68 17.60 6.45 

As can be observed from Table 5.1, the transformation factor țmF, the stiffness ksl and 
the fundamental eigenfrequency f of the beam grillage model is highly dependent on 
the torsional stiffness, especially for model 4 where the torsional stiffness of an 
uncracked section is used. The results of model 6 are also relatively different 
compared to the other models, but model 6 uses a torsional stiffness T(φ) that is far 
from TII(φ), compared to model 4 which uses a T(φ) that is relatively close to TII(φ). It 
is not uncommon to have a moment of inertia ratio III / II lower than the one used in 
this thesis. For such cases, a model using the torsional stiffness of an uncracked 
section will be even more deviant. 

The displacement u2 along a straight line is presented in Figure 5.14a and in 

Figure 5.14b, where the line is presented in each figure. In Figure 5.14a it can be 
noted that model 4 has a deviant shape and it can be the reason why the 
transformation factor țmF differs so much for this model. The difference between 
model 3 and model 4 is greater in Figure 5.14b than in Figure 5.14a which means that 
the beam grillage model corresponds to shell elements better in the centre of the slab 
than closer to the supports. 
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a) b) 

Figure 5.14 Comparison between four methods to model the torsional stiffness T(φ) 
for a load of 100 kN, a) displacement u2 along a straight line described 

in the upper right hand corner, and b) displacement u2 along a straight 

line described in the upper right hand corner. 

When calculating the moment distribution in a slab by hand with either strip method 
or yield line method, see Section 2.8.3, the slab is considered to have lost all its 
torsional stiffness, therefore the stiffness is set to zero, Engström (2014). However in 
reality some torsional stiffness still exists even though the slab is in state II. 

The importance of torsional stiffness is not further analysed in this thesis, and a 
torsional stiffness of T(φ) = TII(φ) is chosen. This is because the torsional stiffness TII 
corresponds well to the stiffness which is used by ADINA when analysing slabs with 
shell elements and a comparison between the two FE models can be conducted. 
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6 Comparison between 2DOF and FE Models 

6.1 Comparison for a beam 

6.1.1 Orientation 

In the FE analysis a simply supported reinforced concrete beam is analysed, which 
can be compared to a 2DOF model with a barrier. For simplicity the reinforcement is 
placed symmetrically in equal amounts at the top and bottom of the beam as 
illustrated in Figure 6.1. The FE analysis is carried out with the commercial software 
ADINA (2014). 

wb 

hb 

EIb 

 l ȕ l 

lb 

P 

 

Figure 6.1 The simply supported reinforced concrete beam with stiffness EIb, width 

wb, length lb, height hb and the load placement factors α and ȕ. 

The geometry and parameters of the beam used in the FE model are presented in 
Table 6.1. The material and cross-sectional properties presented are calculated in the 
same manner as the calculations presented in Appendix G, where the properties of the 
beams in the beam grillage model are calculated. The properties in Table 6.1 are used 
for both elastic and elasto-plastic beams, but for elastic cases the moment-curvature 
relation continues to be linear elastic after the moment capacity is reached. 

The chosen beam presented in Table 6.1 is very large and has therefore a very large 
mass mb of 15 000 kg. The reason for this is that the beam, which in the 2DOF model 
represents body 2, should have a mass after multiplication with the transformation 
factor țmF that is approximately equal to 7 500 kg, which is the mass m2 used earlier 
in this thesis. 

The comparison for beams is conducted for elastic body 1 and body 2, elasto-plastic 
body 1 and elastic body 2 and finally, elastic body 1 and elasto-plastic body 2. Not so 
many collisions are analysed for beams, since the main interest of this thesis is slabs. 
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Table 6.1 Properties of the simply supported reinforced concrete beam, with 

corresponding input parameters to ADINA. 

Length lb 5 m 

Height hb 1 m 

Width wb 1.25 m 

Mass mb 15 000 kg 

Density ρc 2 400 kg/m3 

Concrete class C30/37 

Concrete Young’s modulus Ecm 33 GPa 

Reinforcement B500B Φ16 s200 

Reinforcement Young’s modulus Es 200 GPa 

Concrete cover c 40 mm 

Moment capacity MRd 519 kNm 

Yielding curvature 
plr







 1  2.56∙10-3 m-1 

The stiffness of body 2 k2, used in the 2DOF model, is calculated for a beam 
according to equation (4.31), as 

223

3

l

EI
k b

b   (6.1) 

 

6.1.2 Elastic body 1 and body 2 

To be able to perform valid comparisons between 2DOF and FEM for slab and beam 
collisions with elasto-plastic response, the 2DOF and FEM models are verified for an 
elastic beam collision case. This is evaluated more thoroughly in the precedent 
master’s thesis Asplund and Steckmest (2014). 

A collision with elastic response for both involved bodies is evaluated and the bodies 
have properties according to Table 6.1 and Table 6.2.The position of the point load is 
represented by the factor α and is illustrated in Figure 4.3. 

Table 6.2 2DOF input parameters for collision E1 with an elastic response for 

both body 1 and body 2. 

Case 
α 
[-] 

țmF 

[-] 
k1 

[MN/m] 

k2 
[MN/m] 

m1 
[kg] 

Collision E1 0.5 0.486 1.0 77.8 1 500 

The parameters are chosen so that they approximately correspond to the collision 
examples presented in Chapter 3. The parameters m2, Eeq, EIb and kb for the 2DOF 
model are calculated according to Section 4.2.2. 
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The displacement for body 2 u2 and the internal resistance of body 1 R1 for the 2DOF 
and FE model are illustrated in Figure 6.2. In Figure 6.2b it is observed that the 
duration of the collision is approximately 0.12 s. As can be observed, the two models 
are quite comparable, though there are some differences. The two models are showing 
the same response until the unloading stage and after the collision there is a slight 
shift in the phase of the beam oscillation. These shifts can origin from a slight 
difference in eigenfrequency. 

 

a) b) 

Figure 6.2 Comparison between the 2DOF model and the FE model for 

collision E1, a) displacement of body 2 u2, and b) internal resistance of 

body 1 R1. 

The transformation factor țmF is calculated from the results achieved from the 
corresponding static FE analysis according to equation (4.27). The factor țmF is 
calculated to 0.485 which is close to the theoretically derived factor țmF = 0.486, see 
Appendix D.1. 

As can be observed in Appendix D.1, where elastic collisions are presented for the 
2DOF system studied in Section 3.2.2, collision E1 corresponds well to earlier studied 
impacts. 

 

6.1.3 Elasto-plastic body 1 and elastic body 2 

In reality the bodies involved in a collision may have more of an elasto-plastic 
response. In this section, a series of four different collisions with elasto-plastic 
response of body 1 and elastic response of body 2 are evaluated. The studied beam 
and the colliding object have properties according to Table 6.1 and Table 6.3. The 
position of the point load is represented by the factor α and is illustrated in Figure 6.1. 

-10

0

10

20

0.0 0.1 0.2 0.3 0.4 0.5

D
is

pl
ac

em
en

t,
 u

2
[m

m
]

Time, t [s]

2DOF

FEM

0

300

600

900

1200

0.0 0.1 0.2 0.3 0.4 0.5In
te

rn
al

 r
es

is
ta

nc
e,

 R
1

[k
N

]
Time, t [s]

2DOF

FEM



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:87 
78 

Table 6.3 2DOF input parameters for collision F1-F4 with elasto-plastic 

response of body 1 and elastic response of body 2. 

Case 
α 
[-] 

țmF 

[-] 
k1 

[MN/m] 

k2 
[MN/m] 

m1 
[kg] 

R1,max 

[kN] 

Collision F1 0.5 0.486 1.0 77.8 1 500 500 

Collision F2 0.5 0.486 1.0 77.8 1 500 250 

Collision F3 0.25 0.774 1.0 138.4 1 500 500 

Collision F4 0.25 0.774 1.0 138.4 1 500 250 

The parameters are chosen so that they approximately correspond to the collision 
examples presented in Chapter 3. The parameters m2, Eeq, EIb and k2 for the 2DOF 
model are calculated according to Section 4.2.3. 

The displacement of body 1 for collision F1 for both the 2DOF and FE model are 
illustrated in Figure 6.3a and as can be observed, the 2DOF and FE models generate 
identical results. Figure 6.3b illustrates the internal resistance of body 1 and it can be 
observed that the duration of the collision is approximately 0.15 s. However, when 
comparing the displacement and velocity of body 2 between the two methods, there 
are some very small differences as can be observed in Figure 6.3c and Figure 6.3d. 
The two models are showing the same response until the unloading stage and after the 
collision there is a slight shift in the phase. It is due to the same reason as for 
collision E1 in Section 6.1.2. 

The maximum displacement of body 2 u2 for collision F1 is not similar to that of 
collision E1 in Figure 6.2a, even if these two collisions have the same input data, 
except for the maximum internal resistance of body 1 R1,max. The elasto-plastic 
collision F1 causes a smaller maximum displacement of body 2 u2 than the elastic 
collision E1. This is due to the fact that an elastic body 1 creates a larger internal 
resistance R1, which means a larger load on body 2. 

Note that the duration of the collision is 0.15 s, but the difference in displacement  
u1 – u2 = 0 at the time 0.22 s. This difference is due to the fact that body 1 has endured 
plastic deformations. 
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a) b) 

 

c) d) 

Figure 6.3 Illustration of the response for collision F1, a) displacement of body 1 

u1, b) internal resistance of body 1 R1, c) displacement of body 2 u2, and 

d) velocity of body 2 v2. 

The displacement of body 1 for collision F3 for both the 2DOF and FE model are 
illustrated in Figure 6.4a and as can be observed, the two models generate identical 
results. Figure 6.4b illustrates the internal resistance of body 1 and it can be observed 
that the duration of the collision is approximately 0.15 s. This is the same as for 
collision F1 which is expected since they both have the same maximum internal 
resistance R1,max. However, there are some differences when comparing the 
displacement and velocity of body 2 between the two methods, as can be observed in 
Figure 6.4c and Figure 6.4d. The differences are larger than for collision F1 and it is 
due to the change in the position of the point load. However, the maximum 
displacement for body 2 is corresponding. 

The transformation factor țmF is derived from static load cases which correspond well 
to the dynamic load cases if the load is applied in the centre of the span. However, the 
closer to the supports the point load is applied the larger the difference between static 
and dynamic cases. This is discussed more thoroughly in both Asplund and 
Steckmest (2014) and Johansson (2014). 
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a) b) 

 

c) d) 

Figure 6.4 Illustration of the response for collision F3, a) displacement of body 1 

u1, b) internal resistance of body 1 v1, c) displacement of body 2 u2, and 

d) velocity of body 2 v2. 

For corresponding response diagrams for collision F2 and F4, see Appendix C.2. 

 

6.1.4 Elastic body 1 and elasto-plastic body 2 

To model a realistic behaviour for the structure, an elasto-plastic response of the beam 
is used. However, the transformation factor țmF is dependent on both elastic and 
plastic response and is unique for each set of properties. For a beam with the impact 
applied in the centre, three cases with different transformation factors are evaluated 
further. The further evaluated transformation factors are fully elastic țmF = 0.486, 
fully plastic țmF = 0.333 and one in between țmF = 0.410. These cases are presented in 
Table 6.4, where MRd, α and lb is described in Table 6.1 and Figure 6.1. 

Body 1 is modelled with elastic response for all three cases. The studied beam has 
properties according to Table 6.1. The position of the point load is represented by the 
factor α as illustrated in Figure 4.3. Collision G1a-G1c are all identical except for the 
transformation factor țmF, i.e. only the 2DOF model varies between the three cases. 

The maximum internal resistance of body 2 R2,max is calculated with moment 
equilibrium as 
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b

Rd

max2,
l

M
R

)1(  
  (6.2) 

where MRd, α and lb is described in Table 6.1 and Figure 6.1. 

Table 6.4 2DOF input parameters for collision G1a-G1c with different 

transformation factor țmF and with elastic response of body 1 and 

elasto-plastic response of body 2. 

Case 
α 
[-] 

țmF 

[-] 
k1 

[MN/m] 

k2 
[MN/m] 

m1 
[kg] 

R2,max 

[kN] 

Collision G1a 0.5 0.486 0.5 77.8 1 500 415 

Collision G1b 0.5 0.410 0.5 77.8 1 500 415 

Collision G1c 0.5 0.333 0.5 77.8 1 500 415 

The displacement of body 1 for collision G1a for both the 2DOF and FE model are 
illustrated in Figure 6.5a and as can be observed, the two models generates similar 
results Even though the transformation factor țmF differs between the three cases, the 
displacement of body 1 for the 2DOF model is very similar. This is due to the fact that 
the internal resistance R1 is the same for all three cases and that the magnitude of the 
displacement u1 and the velocity v1 is so large in comparison to the difference between 
the transformation factors țmF. The reason u1 and v1 are large is because the stiffness 
ratio k1 / k2 is small. As illustrated in Figure 6.5b the duration of the collision is 
approximately 0.16 s. 

However, when comparing the displacement and velocity of body 2 for the two 
methods, there are some differences as can be observed in Figure 6.5c and 
Figure 6.5d. It shows that the response of the collision modelled in ADINA is not 
corresponding to the case modelled with a fully elastic țmF, collision G1a. This is 
expected since it is an elasto-plastic model. 
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a) b) 

 

c) d) 

Figure 6.5 Illustration of the response for collision G1a, a) displacement of body 1 

u1, b) internal resistance of body 1 R1, c) displacement of body 2 u2, and 

d) velocity of body 2 v2. 

When comparing the displacement and velocity of body 2 for the two methods, there 
are some differences as can be observed in Figure 6.6a and Figure 6.6b. It shows that 
the response of the collision modelled in ADINA is not directly in between the fully 
elastic and fully plastic case. However, it is closer than for collision G1a, which 
shows that it is closer to the fully plastic case. 
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a) b) 

Figure 6.6 Illustration of the response for collision G1b, a) displacement of body 2 

u2, and b) velocity of body 2 v2. 

When comparing the displacement and velocity of body 2 between the two models for 
collision G1c there are some minor differences as can be observed in Figure 6.7a and 
Figure 6.7b. It clearly shows that the response of the collision modelled in ADINA is 
very close to fully plastic. However, this result is unique for this specific beam and 
incoming object, since the response is highly dependent on the properties of the two 
bodies. 

 

a) b) 

Figure 6.7 Illustration of the response for collision G1c, a) displacement of body 2 

u2, and b) velocity of body 2 v2. 

 

6.1.5 Discussion 

The 2DOF has good correspondence with the FE model when body 2 has a fully 
elastic response, the correspondence is however better the closer the impact is to the 
centre of the beam. When comparing the response of the displacement of body 2 u2 
for collision E1 in Figure 6.2a, with u2 for collision F1 in Figure 6.3c, the results are 
different. The elasto-plastic collision F1 causes a smaller maximum displacement of 
body 2 than the elastic collision E1, which means that there is a large difference if 
body 1 is elastic or elasto-plastic. However, it is on the safe side to assume an elastic 
behaviour of body 1, which agrees with the theory given in Section 2.3.1. 
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The elasto-plastic behaviour of body 2 has good correspondence between the 2DOF 
and the FE model for beams subjected to an impact in the centre of the beam, if a 
correct transformation factor țmF is chosen. The usage of țmF can be improved by 
finding an approach that calculates an optimised țmF for each collision. This approach 
could be based on calculation of the elastic displacement uel and plastic displacement 
upl of the beam. If upl ≈ 0, an elastic țmF is used, if upl >> uel a plastic țmF is used, and 
if upl ≈ uel a mean value of an elastic and plastic țmF is used. 

The response for both elastic and elasto-plastic behaviour for body 1 is the same for 
both the FE model and the 2DOF model, which validates that ADINA handles a mass 
and a spring similar to the 2DOF model using the Central Difference Method. 

This section handles beams subjected to collisions, however if further conclusions 
should be drawn, more collision cases need to be analysed. This is not treated in this 
thesis since the main focus is collision impact at slabs. 

 

6.2 Comparison for a slab 

6.2.1 Orientation 

In the FE analysis a simply supported reinforced concrete slab is used which is 
compared to a 2DOF model with a barrier. For simplicity is the reinforcement placed 
symmetrically in equal amounts at the top and at the bottom of the slab, as illustrated 
in Figure 6.8. The FE analyses are carried out with the commercial software 
ADINA (2014). 

 

lx 

α y
∙l 

αx∙l 
 

l y
 

tsl 

EIsl 

 

Figure 6.8 The simply supported reinforced concrete slab with stiffness EIsl, length 

lx, length ly, thickness tsl and the load placement factors αx and αy. 

The geometry and the parameters of the slab modelled with shell elements are 
presented in Table 6.5. The length, width and thickness ratios of the slab is chosen so 
that 28 x 28 elements can be used and a length thickness ratio l / t = 28 is gained as 
discussed in Section 4.4.2. The magnitude of the length, width and thickness of the 
slab is chosen so that the mass of the slab msl becomes approximately the same as the 
mass of the beam in Section 6.1, i.e. 15 000 kg. The reinforcement arrangement and 
the concrete class are chosen to represent a standard, but quite stiff slab. In this 
chapter, more collisions are analysed than for beams in Section 6.1 since the main 
interest of this thesis is slabs. 
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Table 6.5 Properties of the concrete slab used in the shell element model and for 

hand calculations. 

Length x-direction lx 5.6 m 

Length y-direction ly 5.6 m 

Thickness tsl 0.2 m 

Mass msl 15 052.8 kg 

Density ρc 2 400 kg/m3 

Concrete class C30/37 

Concrete Young’s modulus Ecm 33 GPa 

Reinforcement B500B Φ16 s200 

Reinforcement Young’s modulus Es 200 GPa 

Concrete cover c 30 mm 

Equivalent Young’s modulus Eeq 5.98 GPa 

Moment capacity mRd,m 67.2 kNm/m 

The geometry and the parameters of the beams used in the beam grillage model which 
is used for further analysis are presented in Table 6.6. The material and cross-
sectional properties for the two slab models presented in the tables are calculated 
according to Appendix G. 

Note that there is a difference in the density ρ between the two slab models, this is 
discussed more thoroughly in Section 5.5.1. 

Table 6.6 Properties of the concrete beams used in the beam grillage model. 

Length lb 5.6 m 

Height hb 0.2 m 

Width wb 0.2 m 

Density ρc 1 200 kg/m3 

Concrete class C30/37 

Concrete Young’s modulus Ecm 33 GPa 

Reinforcement B500B Φ16 s200 

Steel Young’s modulus Es 200 GPa 

Concrete cover c 30 mm 

Moment capacity MRd,b 13.4 kNm 

Yield curvature 
plr







 1  17∙10-3 m-1 

Torsional stiffness relation 


IIT
 674.4 kNm2 
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6.2.2 Elastic body 1 and body 2 

To be able to perform valid comparisons between 2DOF and FEM for slab collisions 
with elasto-plastic response, the 2DOF and FE models are confirmed for a series of 
twelve collisions with an elastic response for both body 1 and body 2. The input 
parameters for these collisions are presented in Table 6.7. The transformation factor 
țmF and the stiffness of the slab ksl used for these collisions are the corresponding 
factors derived in Section 4.4.2, for a slab modelled with shell elements. The length 
factors αx and αy are defined as illustrated in Figure 6.8. 

Table 6.7 2DOF and FE input parameters for collision H1-H12 with initial 

velocity v0 = 27.8 m/s. 

Case αx [-] αy [-] țmF [-] k1 [MN/m] m1 [kg] ksl [MN/m] 

Collision H1 0.5 0.5 0.203 0.5 1 500 10.79 

Collision H2 0.5 0.25 0.235 0.5 1 500 15.94 

Collision H3 0.25 0.25 0.241 0.5 1 500 22.02 

Collision H4 0.5 0.5 0.203 1 1 500 10.79 

Collision H5 0.5 0.25 0.235 1 1 500 15.94 

Collision H6 0.25 0.25 0.241 1 1 500 22.02 

Collision H7 0.5 0.5 0.203 0.5 15 000 10.79 

Collision H8 0.5 0.25 0.235 0.5 15 000 15.94 

Collision H9 0.25 0.25 0.241 0.5 15 000 22.02 

Collision H10 0.5 0.5 0.203 1 15 000 10.79 

Collision H11 0.5 0.25 0.235 1 15 000 15.94 

Collision H12 0.25 0.25 0.241 1 15 000 22.02 

A comparison between the responses for the 2DOF and the FE models modelled with 
both shell elements and as a beam grillage, for collision H1, can be seen in Figure 6.9. 
As can be observed, the response for the two FE models is almost the same. The 
response of body 1 is identical between the 2DOF and the FE models. However, there 
is a difference in the response for body 2 between the 2DOF and the FE models. 

As can be seen from the internal resistance of body 1 R1 in Figure 6.9b, the collision 
has a duration of approximately 0.17 s. In Figure 6.9c, the correspondence between 
the displacements of body 2 u2 is approximately the same for the first 0.13 s between 
the models, but after that it differs a bit. The small difference seen in Figure 6.9c 
during the rebound is believed to cause the phase shift and difference in amplitude 
after the collision. The overall behaviour during the collision seems to be good, and it 
is this response that is of main interest. 
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a) b) 

 

c) d) 

Figure 6.9 Illustration of collision H1, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, d) velocity of 

body 2 v2. 

In Figure 6.10, collision H1 is compared with collision H4 for the shell element 
model. When comparing these collisions, it is only the stiffness of body 1 k1 that is 
different and it is collision H4 that has a stiffer body 1. The duration of the collision is 
shorter with a larger k1 as seen in Figure 6.10b, and discussed in Chapter 3. To be 
noted is that a larger stiffness also gives larger maximum displacement of body 2 u2, 
as seen in Figure 6.10a. 
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a) b) 

Figure 6.10 Comparison in response between collision H1 and collision H4 for the 

shell element model, a) displacement of body 2 u2, and b) internal 

resistance of body 1 R1. 

A comparison between the responses for the 2DOF and the FE models modelled with 
both shell elements and as a beam grillage, for collision H12, can be seen in 
Figure 6.11. As can be observed, the response for the two FE models is almost the 
same. The response of body 1 is identical between the 2DOF and the FE models. 
However, there is a difference in the response for body 2 between the 2DOF and the 
FE models. 

As can be seen from the internal resistance of body 1 R1 in Figure 6.11b, the collision 
has a duration of approximately 0.39 s. In Figure 6.11c, the maximum displacements 
of body 2 u2 is approximately the same even though the 2DOF model has a slightly 
different response. Even though there is a difference after the collision, is the overall 
behaviour during the collision good, and it is this response that is of main interest. 
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a) b) 

 

c) d) 

Figure 6.11 Illustration of collision H12, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 

In Figure 6.12, collision H9 is compared with collision H12 for the shell element 
model. When comparing these collisions, it is only the stiffness of body 1 k1 that is 
different and it is collision H12 that has a stiffer body 1. The duration of the collision 
is shorter with a larger k1 as seen in Figure 6.12b. To be noted is that a larger stiffness 
also gives larger maximum displacement of body 2 u2, as seen in Figure 6.12a. 
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a) b) 

Figure 6.12 Comparison in response between collision H9 and collision H12 for the 

shell element model, a) displacement of body 2 u2, and b) internal 

resistance of body 1 R1. 

The overall correspondence between the 2DOF and FE models are in this section 
good. However, this is probably not the case for all property combinations of body 1 
and body 2. 

For response diagrams for collision H2-H11, see Appendix C.4. 

 

6.2.3 Elasto-plastic body 1 and elastic body 2 

In reality, the involved bodies in a collision may have more of an elasto-plastic 
response. In this section a series of eight collisions is evaluated, where body 1 is 
modelled with an elasto-plastic response and body 2 is modelled with elastic response. 
The input parameters for the studied cases are presented in Table 6.8. To avoid a large 
number of collision cases, the point load is applied in the centre of the slab for all 
collisions, i.e. αx = αy = 0.5, țmF = 0.203 and ksl = 10.79 MN/m. 

Table 6.8 2DOF and FE input parameters for collision I1-I8 with initial velocity 

v0 = 27.8 m/s. The point load is applied in the centre of the slab, i.e. 

αx = αy = 0.5, țmF = 0.203 and ksl = 10.79 MN/m. 

Case k1 [MN/m] m1 [kg] R1,max [MN] 

Collision I1 0.5 1 500 0.3 

Collision I2 0.5 1 500 0.6 

Collision I3 1 1 500 0.3 

Collision I4 1 1 500 0.6 

Collision I5 0.5 15 000 1 

Collision I6 0.5 15 000 2 

Collision I7 1 15 000 1 

Collision I8 1 15 000 2 

A comparison between the responses for the 2DOF and the FE model modelled with 
both shell elements and as a beam grillage, for collision I1 can be seen in Figure 6.13. 
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As can be observed, the response for the two FE models is almost the same. The 
response of body 1 is identical between the 2DOF and the FE models. However, there 
is a difference in the response for body 2 between the 2DOF and the FE models. 

As for collision H1 presented in Figure 6.9, the response of u2 in Figure 6.13c is quite 
similar between the models during, but not after the collision, which has the duration 
of approximately 0.24 s according to Figure 6.13b. However, it is the response during 
the collision that is of main interest. 

 

a) b) 

 

c) d) 

Figure 6.13 Illustration of collision I1, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, d) velocity of 

body 2 v2. 

In Figure 6.14, collision I1 is compared with collision I3 for the shell element model. 
When comparing these collisions, it is only the stiffness of body 1 k1 that is different 
and it is collision I3 that has a stiffer body 1. The duration of the collision is shorter 
with a larger k1 as seen in Figure 6.14b, but the responses of body 1 are similar. As 
illustrated in Figure 6.14a, the responses of body 2 are also similar in this comparison, 
even though k1 is twice as large for collision I3 as for collision I1. That the responses 
are similar is due to that both collisions has the same maximum internal resistance of 
body 1 R1,max, and this parameter is more dominant than k1 for these collisions. 
However, a larger stiffness still gives larger maximum displacement of body 2 u2. 
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a) b) 

Figure 6.14 Comparison in response between collision I1 and collision I3 for the 

shell element model, a) displacement of body 2 u2, and b) internal 

resistance of body 1 R1. 

A comparison between the responses for the 2DOF and the FE model modelled with 
both shell elements and as a beam grillage, for collision I8 can be seen in Figure 6.15. 
As can be observed, the response for the two FE models is almost the same. The 
response of body 1 is identical between the 2DOF and the FE models. However, there 
is a difference in the response for body 2 between the 2DOF and the FE models. 

As for collision I1 presented in Figure 6.13, the response of u2 in Figure 6.15c is quite 
similar between the models during, but not after the collision, which has the duration 
of approximately 0.42 s according to Figure 6.15b. However, it is the response during 
the collision that is of main interest. 
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a) b) 

 

c) d) 

Figure 6.15 Illustration of collision I8, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 

In Figure 6.16, collision I6 is compared with collision I8 for the shell element model. 
When comparing these collisions, it is only the stiffness of body 1 k1 that is different 
and it is collision I8 that has a stiffer body 1. The duration of the collision is shorter 
with a larger k1 as seen in Figure 6.16b. A larger stiffness also gives larger maximum 
displacement of body 2 u2, as seen in Figure 6.16a. In this comparison however, there 
is a small difference in maximum displacements of body 2 u2 between collision I6 and 
collision I8, this is due to the influence of the maximum internal resistance of body 1 
R1,max. 
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a) b) 

Figure 6.16 Comparison in response between collision I6 and collision I8 for the 

shell element model, a) displacement of body 2 u2, and b) internal 

resistance of body 1 R1 

In Figure 6.17, a comparison between collision H1, I1 and I2 is presented for the 
responses of the shell element analysis. The response of u2 for collision I1 is not 
similar at all with the response of u2 for collision H1, even if these two collisions have 
the same input data, except for the maximum internal resistance of body 1 R1,max. The 
elasto-plastic collision I1 causes a smaller maximum displacement of body 2 u2 than 
the elastic collision H1. However, collision I2 has a higher R1,max than collision I1 and 
is therefore closer to the fully elastic collision H1. 

 

a) b) 

Figure 6.17 Comparison in response between collision H1, collision I1 and 

collision I2 for the shell element model, a) displacement of body 2 u2, 

and b) internal resistance of body 1 R1. 

The overall correspondence between the 2DOF and FE models are in this section 
good. However, this is probably not the case for all property combinations of body 1 
and body 2. 

For response diagrams for collision I2-I7, see Appendix C.5. 
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6.2.4 Elastic body 1 and elasto-plastic body 2 

6.2.4.1 Orientation 

For the collision analysis with an elasto-plastic slab, some issues exist. Firstly, it is of 
interest to examine the collision impact at an elasto-plastic slab using a beam grillage 
model. However, it is concluded in Section 6.2.4.2 that the elasto-plastic beam 
grillage model does not have a sufficiently good behaviour. Therefore, shell elements 
are used instead for the elasto-plastic slab. 

Secondly, it is discovered that the transformation factor țmF, has a lower value than 
expected for elasto-plastic slabs modelled with shell elements. This is more 
thoroughly evaluated in Section 6.2.4.3. 

 

6.2.4.2 Static study of the elasto-plastic slab model 

The concrete slab can be modelled as a beam grillage according to Section 5.5.1. One 
way to verify the model is to show the response during loading in a load-displacement 
diagram. An increasing prescribed displacement is applied in the system point of the 
slab us = u2 to create an internal resistance force R2 in the system point. This response 
is illustrated in Figure 6.18 for torsional stiffness model 3 to 6, which are presented in 
Section 5.5.3, together with the load capacity calculated with strip method according 
to Appendix G. 

The analysis shows that a local inaccuracy in the model occurs at the node where the 
prescribed displacement is applied, which causes the sharp stop in load capacity for 
model 3 to 5 as illustrated in Figure 6.18. The local inaccuracy occurs in one node 
which deflects at a much faster rate than the other nodes after a certain point. For 
model 6, which is modelled with no torsional stiffness, this local inaccuracy is not 
occurring. The reason for this is that model 6 does not reach a load level which is as 
high as for model 3 to 5, because model 6 is limited by its moment capacity. Whereas 
model 3 to 5 have no load limit since they have no limit in torsional stiffness. 

Since the strip method is on the safe side and does not account for torsional stiffness, 
it is expected to have the lowest load capacity. Model 6 is showing a load capacity 
which is about half the load capacity obtained with the strip method, according to 
Appendix G. This indicates that the response of the beam grillage model used is non-
viable. 

 

Figure 6.18 Illustration of the load-displacement response for torsional stiffness 

model 3 to 6, see Section 5.5.3, for load case 1 and the load capacity 

calculated with the strip method. 
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The local inaccuracy is believed to happen due to a stress concentration which is 
caused by the fact that the torsion-twisting relation is modelled with linear response 
and has no limit. Hence, the concrete slab will continue to carry load after the bending 
moment capacity of the beam grillage has been reached. A new test where the beam 
elements also yield in torsion is conducted, with the yield limit presented in Table 6.9. 
The torsion-twisting relation is modelled with a bilinear curve, in the same manner as 
the moment-curvature relation for model 3, see Appendix G for the calculation of this 
yield limit for the torsional moment. 

Table 6.9 Properties for the bilinear torsional stiffness used in the beam grillage 

model. 

Yield twist φ 4.165 km-1 

Torsional moment TII 2.80 kNm 

The response is illustrated in Figure 6.19 and as can be observed, the local inaccuracy 
phenomenon is now gone. However, the load capacity is still far below the load 
capacity obtained with the strip method, which suggests that this beam grillage model 
is also non-viable. For corresponding load-displacement relations for load case 2 
and 3 and for a rectangular slab, see Appendix F.2. 

 

Figure 6.19 Illustration of the load-displacement response of a beam grillage model 

based on torsional stiffness model 3 for load case 1, but with a bilinear 

torsion-twisting response. 

The response of the same slab modelled with shell elements, according to Section 5.4, 
is illustrated in Figure 6.20. Even though the shell elements show a load capacity 
which is slightly lower than the load obtained from the strip method, it has a much 
more satisfactory response than the response from the beam grillage model. To obtain 
a load-displacement curve for the beam grillage model which is somewhat close to the 
response from the shell element model, both the moment-curvature and the torsion-
twisting limits needs to be increased with a factor of square root of two. The beam 
grillage model with increased strength is illustrated in Figure 6.20. 
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Figure 6.20 Illustration of the load-displacement response of the slab modelled with 

shell elements and the slab modelled as a beam grillage with torsion-

twisting and moment-curvature limits increased with a factor of 2 . 

It is believed that the reason why the beam grillage model generates a load capacity 
which is far below both what the strip method and what the shell element model 
suggests, is that the beam grillage model is having trouble distributing the load once 
the yield limit is reached in a local beam element. To verify this, the displacement 
along a line which goes through the point of loading is plotted for both the beam 
grillage and the shell element model. The response between the two failure modes 
should be similar with a peak in the centre. As illustrated in Figure 6.21, this is also 
the case when compared to the theoretical displacement, discussed in Section 4.4.3. 
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Figure 6.21 Illustration of the displacement of body 2 u2 on a quadratic slab along a 

line for the theoretical assumed model, the beam grillage and the shell 

element model. The line and the point of loading are presented in the 

upper right hand corner. 

The expected failure mode is that there will be a plateau between the yield lines, as 
illustrated by the theoretical displacement illustrated in Figure 6.22. It is possible to 
observe that the shell element model is having a response which vaguely reminds of a 
plateau-in contrast to the beam grillage model which instead has a response which is 
similar to the one observed in Figure 6.21. Even though the shell element is showing a 
plateau like behaviour, none of the two models is close to the theoretically assumed 
displacement, which clearly indicates that there is a major difference between the 
assumed failure mode and the obtained. The beam grillage and shell element model 
are corresponding better in the centre of the slab, when the load is applied at the 
centre of the slab, which agrees with the results obtained in Section 5.5.3. 
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Figure 6.22 Illustration of the displacement of body 2 u2 on a quadratic slab along a 

line for the theoretical assumed model, the beam grillage and the shell 

element model. The line and the point of loading are presented in the 

upper right hand corner. 

In Figure 6.23, the deformation of the whole beam grillage model is illustrated from 
different angles of view. From this, the results of Figure 6.21 and Figure 6.22 can be 
confirmed, and it can also be stated that the areas close to the corners of the slab is not 
deforming as expected. 

 

Figure 6.23 Illustration of the element grid and the deformation of the beam 

grillage model in ADINA from two different angles of view. 

Based on Figure 6.21, Figure 6.22 and Figure 6.23, the failure mode for the beam 
grillage model is believed to be according to Figure 6.24a. This means that the area in 
which the moment is distributed at is reduced to half of the area in the expected 
failure mode used in the strip method calculations, as schematically illustrated in 
Figure 6.24b. This is believed to be the reason why the load capacity for the beam 
grillage model without torsional resistance is half of the load capacity according to the 
strip method in Figure 6.18. 
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a) b) 

Figure 6.24 Illustration of the suggested failure modes for a simply supported 

reinforced concrete slab for load case 1, modelled a) as a beam 

grillage, and b) with shell elements. The marked area is the load 

carrying part of the slab. 

Since the beam grillage model is having trouble distributing the load to the corners of 
the slab, a beam grillage model with diagonally placed beams is analysed, see 
Figure 6.25. To still have a quadratic cross section of the beams, the distance between 
the nodes in x- and y-direction is increased to 0.28 m, which gives a width of the 
beams that is 0.28 / 2  = 0.198 m ≈ 0.2 m. Therefore, the same moment-curvature 
and torsion-twisting relations as the normal beam grillage model are used. 

 

0.2m 

0.2m 

0.28m 

0.2m 

 

Figure 6.25 Illustration of the diagonal beam grillage model and the cross-section 

of the beams. 

This model with diagonal beams, is having the expected failure mode and almost the 
expected load capacity for a load placed in the centre, see Figure 6.26. 
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a) b) 

Figure 6.26 Study of diagonal beam grillage model for load case 1, a) element grid 

and the deformation of the model in ADINA, and b) load-displacement 

response. 

However, the failure mode and load capacity for a load placed unsymmetrically is not 
as expected for the diagonal beam grillage model, see Figure 6.27. Hence, this type of 
modelling is non-viable. 

  

a) b) 

Figure 6.27 Study of diagonal beam grillage model for load case 3, a) element grid 

and the deformation of the model in ADINA, and b) load-displacement 

response. 

Finally, a beam grillage model with both a normal grid of beams and a diagonal grid 
of beams is analysed, see Figure 6.28. The node positions of this model are the same 
as for the diagonal beam grillage model. Therefore, the beams in the normal directions 
have a width of 0.28 m and the diagonal beams have a width of 0.2 m. The beams with a 
width of 0.28 m have moment-curvature and torsion-twisting relations which are calculated in 
the same manner as for the normal beam grillage model, see Appendix G. Since this model 
now has beams in four directions, whereas the normal beam grillage model has in two 
directions, the moment capacity and torsional stiffness capacity is divided by two. The density 
is divided by four since it is divided by two for the normal beam grillage model. 
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0.2m 

0.2m 

0.28m 

0.2m 

 

Figure 6.28 Illustration of the beam grillage model with both a normal grid of 

beams and a diagonal grid of beams and the cross-section of the beams. 

This model has a quite good plastic deformation shape, as illustrated in Figure 6.29. 
However, this model is unstable and cannot handle large displacements and therefore 
no distinct load capacity can be found. The response indicates that there are two 
different yield limits. The reason for this is believed to be that there are both normal 
and diagonal beams with different capacities. It is also difficult to use correct input 
data since both normal and diagonal directions are used. This makes it hard to utilise 
the advantages of the beam grillage model, i.e. moment-curvature, torsion-twisting, 
orthotropic behaviour and different reinforcement arrangement in different sections. 
This model can therefore be considered as non-viable as well. 

 

a) b) 

Figure 6.29 Illustration of how the element grid and the deformation of the beam 

grillage model with both a normal grid of beams and a diagonally grid 

of beams. For a) load case 1, and b) unsymmetrical load case. 

Based on this, the elasto-plastic slab used for the analyses in this thesis is modelled 
with shell elements. This despite that ADINA (2014) will set the Poison’s ratio to 
υ = 0.5 when the shell elements yields, which causes an unintended increase of the 
moment capacity, as discussed in Section 5.4. 

The failure mode for a slab modelled with shell elements is not completely as 
expected and has a smoother deformation shape than expected, as seen in Figure 6.22. 
This is believed to depend on the fact that the failure mode for a slab subjected to a 
point load cannot be derived from the same principles used for a uniformly distributed 
load. Hence, the obtained failure mode is different from the expected one. This is 
believed to be the reason why the load capacity for a slab modelled with shell 
elements is slightly lower than the expected load capacity obtained from the strip 
method, as illustrated in Figure 6.20. 

In Figure 6.30 the plastic strain distribution is illustrated for load case 1 and 3, were 
purple and blue indicates that the strain is low or around the yield limit and red and 
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pink indicates a very high plastic strain. The plastic strain can be interpreted as 
yielding in the reinforcement, which means that the yield strain can be seen as an 
illustration of the yield lines. For load case 1 in Figure 6.30a, it can be observed that 
the failure mode reminds of the expected one, which explains why the load capacity 
obtained is close to that calculated with the strip method. However, for load case 3 the 
failure mode is different from the expected, as illustrated in Figure 6.30b. The same 
goes for load case 2 and for load cases on rectangular slabs, which are presented with 
corresponding illustrations in Appendix F.2. 

  

 
 

No yield strain 

High yield strain 

 

a) b) 

Figure 6.30 Illustration of the distribution of the plastic strain in x-direction for 

a) load case 1, and b) load case 3. 

In Figure 6.31a, the load-displacement response for load case 1 is illustrated. It can be 
stated that the strip method calculations has very similar load capacity to that of the 
shell element model. This is probably a result of that the failure mode reminds of the 
expected one, as seen in Figure 6.30a. However, the load capacity calculated with the 
strip method is not on the safe side for load case 1, even if it is close. In Figure 6.31b, 
the load-displacement response for load case 3 is illustrated. The load capacity 
calculated with the strip method is in this case clearly overestimated if compared to 
that from the FE analysis. This is probably a result of that the failure mode is far from 
the expected one, as seen in Figure 6.30b. 

 

a) b) 

Figure 6.31 Illustration of the load-displacement response of the shell element 

model for a slab subjected to a point load a) load case 1, and b) load 

case 3. 

To verify that the shell element model is valid, a uniformly distributed load is applied 
on the same quadratic slab and on a rectangular slab with side length lx = 2ly. As can 
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be observed in Figure 6.32 the failure mode is the same as the expected one as 
discussed in Section 2.8.3. Purple and blue indicates that the strain is low or around 
the yield limit and red and pink indicates a very high plastic strain. 

  

 
 

No yield strain 

High yield strain 

 

a) b) 

Figure 6.32 Illustration of the distribution of the plastic strain in x-direction for 

a) quadratic slab subjected to a uniformly distributed load, and 

b) rectangular slab with side length lx = 2ly subjected to a uniformly 

distributed load. 

The load capacity is calculated with the strip method according to Appendix G for 
both of the cases with uniformly distributed load. As can be observed in Figure 6.33, 
the load capacity obtained with the strip method is below the load obtained from the 
shell element model, hence the strip method is on the safe side as expected. This 
means that the shell element model is valid. However, this also means that it is not 
possible to directly translate the analogy of the strip method used for slabs subjected 
to uniformly distributed loads, onto slabs subjected to point loads. 

 

a) b) 

Figure 6.33 Illustration of the load-displacement response, where the displacement 

uc is measured in the centre of the slab, of the shell element model for a 

slab subjected to a uniformly distributed load a) quadratic slab, and 

b) rectangular slab with side length lx = 2ly. 

To further verify the shell element model for a quadratic slab with a uniformly 
distributed load, its displacement lines are compared to the theoretical displacement 
lines, see Figure 6.34. From this comparison it can be concluded that the 
displacements are also close to the expected, just as the strains illustrates in 
Figure 6.32. 
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a) b) 

Figure 6.34 Displacement of body 2 u2, on a quadratic slab subjected to a uniformly 

distributed load, along a line for the shell element model and the 

theoretical assumed model. For a) a line through the centre, and b) a 

line between the centre and the edge. 

For additional plastic strain distribution diagrams for load case 2 and for a rectangular 
slab with side length lx = 2ly subjected to a point load in the centre, see Appendix F.3. 

 

6.2.4.3 Reduction of the plastic transformation factor κmF,pl 

The slab modelled with shell elements subjected to a point load, does not have the 
shape of a pyramid when having elasto-plastic behaviour, as illustrated in Figure 6.21 
and Figure 6.22. More figures illustrating this phenomenon is shown in Appendix F.1. 
This result do not agree with Section 4.4.3, where a pyramid like deformation shape 
of the slab is assumed when țmF,pl is derived. The displacement in the system point us, 
is larger than for a pyramid shaped yield response, if this is compared to the mean 
displacements for all the nodes of the slab. This leads to a lower țm,pl, and thereby a 
lower țmF,pl according to equation (6.3) derived in Section 4.1.2. 
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In Figure 6.35, țmF is plotted as a function of the displacement at the system point us, 
for the static load cases 2 and 3 presented in Section 4.4.2. As can be seen, țmF do not 
have one single value for the plastic part. Instead țmF seems to decrease with 
increasing displacement in the system point us. It can also be observed that țmF is 
lower than the derived țmF,pl = 1/6 in Section 4.4.3. For corresponding diagrams for țm 
and țF, see Appendix D.2. 

In Figure 6.35, it can also be seen that the curve for țmF depends on the actual load 
case. Load case 2 has a value for țmF of approximately 0.10 when the displacement in 
the system point us of the slab is 0.6 m. Load case 3 on the other hand has a value of 
approximately 0.07 for țmF when the displacement in the system point us of the slab is 
0.6 m. 
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a) b) 

Figure 6.35 Illustration of the transformation factor țmF plotted as a function of the 

displacement at the system point of body 2 u2 for a) load case 2, and 

b) load case 3. 

Since of the transformation factors being different for different static load cases and 
different plastic displacements, it can be suspected that țmF does not have the same 
curve for a dynamic case, where the load duration is short and load magnitude is high, 
as for a static case where the load is stepwise applied. Figure 6.36a shows țmF as a 
function of the displacement of body 2 u2 for the static load case 1 and the 
corresponding curve for a dynamic case. The dynamic case is a collision impact with 
properties of body 1 according to collision H10 in Table 6.7 but with an initial 
velocity of v0 = 10 m/s. The displacement of body 2 u2 as a function of time for the 
dynamic case is illustrated in Figure 6.36b. The values of țmF for the dynamic case are 
derived during the first 0.27 s of the collision, until the maximum displacement u2 has 
occurred. 

Figure 6.36a clearly shows that the values for țmF are not the same for static and 
dynamic cases. The dynamic case has lower values for țmF than the static case, which 
means that the dynamic case has a more locally shaped deformation around the load 
application area according to equation (6.3). The reason for this is believed to be that 
the slab does not have the time to distribute the deformation completely, because of 
the relatively short duration of the collision impact. However, the dynamic case will 
have a țmF which is the same as for a static case when the deformation has reached its 
maximum value. 
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a) b) 

Figure 6.36 Illustration of a) the transformation factor țmF plotted as a function of 

the displacement at the system point of body 2 u2 for load case 1, and 

the first 0.25 s of a dynamic case based on collision H10 but with an 

initial velocity v0 = 10 m/s, and b) the displacement at the system point 

us as a function of time for the current dynamic case. 

In Figure 6.37, the static displacement is compared to the dynamic case used in 
Figure 6.36. These plots further confirms that slabs subjected to an impact load can 
have more local displacements around the load application area than slabs subjected 
to static point loads. 

 

a) b) 

Figure 6.37 Displacement of body 2 u2, on a quadratic slab subjected to a static 

point load and a dynamic case 0.14 s into the collision used in 

Figure 6.36. For a) a line through the centre, and b) a line between the 

centre and the edge. 

Based on this, it can be stated that țmF can have a lower value than the theoretically 
derived value of 1/6, and especially for dynamic cases. Therefore, when analysing an 
elasto-plastic slab with 2DOF in Section 6.2.4.4, țmF = 0.1 is tested. 

 

6.2.4.4 Comparison between 2DOF and shell element model 

To model a more realistic behaviour for the simply supported reinforced concrete 
slab, an elasto-plastic response is used, as discussed in Section 6.2.4.3. A series of 
twelve collisions with an elastic response of body 1 and an elasto-plastic response of 
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body 2 is conducted with input parameters according to Table 6.10. As described in 
Section 6.2.4.3, only shell element models are used for the FE analysis in this section. 

Table 6.10 FE and 2DOF input parameters for collision J1-J12. 

Case 
αx 

[-] 
αy 

[-] 
k1 

[MN/m] 
m1 

[kg] 
v0 

[m/s] 
2DOF k2 

[MN/m] 
2DOF R2,max 

[kN] 

Collision J1 0.5 0.5 0.5 1 500 27.8 10.79 537.7 

Collision J2 0.5 0.25 0.5 1 500 27.8 15.94 537.7 

Collision J3 0.25 0.25 0.5 1 500 27.8 22.02 716.9 

Collision J4 0.5 0.5 1 1 500 27.8 10.79 537.7 

Collision J5 0.5 0.25 1 1 500 27.8 22.02 537.7 

Collision J6 0.25 0.25 1 1 500 27.8 22.02 716.9 

Collision J7 0.5 0.5 0.5 15 000 10 10.79 537.7 

Collision J8 0.5 0.25 0.5 15 000 10 15.94 537.7 

Collision J9 0.25 0.25 0.5 15 000 10 22.02 716.9 

Collision J10 0.5 0.5 1 15 000 10 10.79 537.7 

Collision J11 0.5 0.25 1 15 000 10 15.94 537.7 

Collision J12 0.25 0.25 1 15 000 10 22.02 716.9 

The reason for having the lower value of v0 = 10 m/s, or 36 km/h, for collision J6-J12 
instead of v0 = 27.8 m/s, as in the previous parts of this thesis, is that v0 = 27.8 m/s 
gives extremely large displacements in the slab. The stiffness of body 2 in the 2DOF 
model is taken from the stiffness of the slab ksl presented in Table 4.1, and the 
maximum internal resistance of body 2 R2,max is derived using the strip method 
explained in Section 2.8.3. The length factors αx and αy are defined as illustrated in 
Figure 6.8. 

Similarly to the beam with elasto-plastic response in Section 6.1.4 the transformation 
factor țmF now depends on both elastic and plastic response and is unique for each set 
of properties. In Section 6.2.4.3, it is also shown that țmF can be lower than the 
theoretically derived value of 1/6 during plastic response, for the slab model used in 
this thesis. Because of this uncertainty, different țmF are tested in the 2DOF model for 
collision J1-J12. The țmF used in the 2DOF are, the elastic țmF presented in Table 4.1 
for different load cases, the theoretically derived plastic țmF = 1/6 from Section 4.4.3, 
and țmF = 0.1 as discussed in Section 6.2.4.3. 

In Figure 6.38, the load-displacement relation for load case 1 and 3 are illustrated for 
both the shell element model and the 2DOF model. As can be seen in Figure 6.38b, 
the maximum internal resistance of body 2 R2,max, is very different in the 2DOF model 
compared to the shell element model for load case 3. The reason for this is that the 
strip method gives a load capacity that is approximately 18 % higher than the load 
capacity obtained by the shell element model. It is believed that the assumed failure 
mode used in the strip method is not correct. See Appendix F.2 for more load-
displacement diagrams. 
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The load-displacement relations would have been better if R2,max in the 2DOF model 
had been based on the load capacity of the shell element model. However, the strip 
method is still used to calculate R2,max for the 2DOF model so that the input data for 
the 2DOF model can be based on hand calculations. 

 

a) b) 

Figure 6.38 Illustration of the load-displacement relation for the shell element and 

the 2DOF model for a) load case 1, and b) load case 3. 

A comparison between the responses for the 2DOF system and the FE model with 
shell elements for collision J1 can be seen in Figure 6.39. The internal resistance of 
body 1 R1 is plotted as a function of time in Figure 6.39b. In this diagram, all the 
2DOF model curves and the shell element model correspond well and it can be stated 
that the collision has a duration of approximately 0.17 s. However, in contrast to the 
analysis carried out with a slab modelled with an elastic response there is now a slight 
difference after the collision for the displacement of body 1 u1 as seen in Figure 6.39a. 

In Figure 6.39c, the displacement of body 2 u2 as a function of time is illustrated. It 
can be seen that the 2DOF closest to the shell element model is the one using 
țmF = 0.1, which has a maximum displacement quite close to shell elements, but not 
on the safe side. 

The response after 0.17 s is not corresponding well between the 2DOF and the shell 
element model. A part of this difference is believed to be a result of the difference in 
load-displacement relations for load case 1, where the 2DOF model has a sharper 
curve than the shell element model, see Figure 6.38. In addition, the load-
displacement relation for the shell element model may be different for dynamic cases 
compared to the static cases presented in Figure 6.38. The fact that the actual 
transformation factor țmF from the shell element model varies so much is also 
believed to affect the correspondence. 
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a) b) 

 

c) d) 

Figure 6.39 Illustration of collision J1, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 

A comparison between the responses for the 2DOF and the FE model with shell 
elements for collision J3 can be seen in Figure 6.40. The internal resistance of body 1 
R1 is plotted as a function of time in Figure 6.40b. In this diagram, the 2DOF and the 
shell element model do not correspond as well as for body 1 in previous sections of 
this thesis. But all models seem to have the same collision duration of approximately 
0.17 s. However, in contrast to the analysis carried out with a slab modelled with an 
elastic response there is now a slight difference after the collision for the displacement 
of body 1 u1 as seen in Figure 6.40a. 

In Figure 6.40c, the displacement of body 2 u2 as a function of time is illustrated. It 
can be seen that the 2DOF and the shell element model do not correspond at all. One 
reason for this is believed to be the great difference in the maximum internal 
resistance of body 2 R2,max between the models for load case 3, see Figure 6.38b. 
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a) b) 

 

c) d) 

Figure 6.40 Illustration of collision J3, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 

To decrease the large difference observed in Figure 6.40, the maximum internal 
resistance of body 2 R2,max obtained from the FE analysis is used as input data for the 
2DOF model instead of the hand calculated R2,max. This is illustrated in Figure 6.41 
were it can be observed that the difference between the 2DOF and shell element 
model is smaller than in Figure 6.40, but still large. 

  

-12

-9

-6

-3

0

3

0.0 0.1 0.2 0.3 0.4 0.5

D
is

pl
ac

em
en

t,
 u

1
[m

]

Time, t [s]

Shell
2DOF kmf=0.1
2DOF kmf=0.167
2DOF kmf=0.241

0

200

400

600

800

0.0 0.1 0.2 0.3 0.4 0.5In
te

rn
al

 r
es

is
ta

nc
e,

 R
1

[k
N

]

Time, t [s]

Shell
2DOF kmf=0.1
2DOF kmf=0.167
2DOF kmf=0.241

0

100

200

300

400

500

0.0 0.1 0.2 0.3 0.4 0.5

D
is

pl
ac

em
en

t,
 u

2
[m

m
]

Time, t [s]

Shell
2DOF kmf=0.1
2DOF kmf=0.167
2DOF kmf=0.241

-2

0

2

4

6

8

0.0 0.1 0.2 0.3 0.4 0.5

V
el

oc
it

y,
 v

2
[m

/s
]

Time, t [s]

Shell
2DOF kmf=0.1
2DOF kmf=0.167
2DOF kmf=0.241



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:87 
112 

 

a) b) 

Figure 6.41 Illustration of the response for collision J3 with R2,max obtained from the 

FE analysis as input data, a) displacement of body 2, and b) internal 

resistance of body 1 R1. 

A comparison between the responses for the 2DOF and the FE model with shell 
elements for collision J7 can be seen in Figure 6.42. The internal resistance of body 1 
R1 is plotted as a function of time in Figure 6.42b. In this diagram, the 2DOF and the 
shell element model do not correspond as well as for body 1 in previous sections of 
this thesis. The models have a collision duration of about 0.55 – 0.6 s. However, in 
contrast to the analysis carried out with a slab modelled with an elastic response there 
is now a slight difference after the collision for the displacement of body 1 u1 as seen 
in Figure 6.42a. 

In Figure 6.42c, the displacement of body 2 u2 as a function of time is illustrated. It 
can be seen that the 2DOF model closest to the shell element model is the one using 
țmF = 0.1, and that all 2DOF model curves maximum displacements are close to the 
shell element models. 

When comparing collision J7 with collision J10, which is presented in Appendix C.6, 
it is only the stiffness of body 1 k1 that is different. As seen the duration of the 
collision is shorter with a larger k1 and a larger stiffness gives slightly larger 
displacement of body 2 u2. 
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a) b) 

 

c) d) 

Figure 6.42 Illustration of collision J7, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 

A comparison between the responses for the 2DOF and the FE model with shell 
elements for collision J9 can be seen in Figure 6.43. The internal resistance of body 1 
R1 is plotted as a function of time in Figure 6.43b. In this graph, the 2DOF and the 
shell element model do not correspond as well as for body 1 in previous sections of 
this thesis. The models have a collision duration of about 0.55 – 0.6 s. However, in 
contrast to the analysis carried out with a slab modelled with an elastic response there 
is now a difference after the collision for the displacement of body 1 u1 as seen in 
Figure 6.43a. 

In Figure 6.43c, the displacement of body 2 u2 as a function of time is illustrated. It 
can be seen that the 2DOF and the shell element model do not correspond at all, just 
as for collision J3. This too is believed to partly depend on the great difference in the 
maximum internal resistance of body 2 R2,max between the models for load case 3, see 
Figure 6.38b. 
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a) b) 

 

c) d) 

Figure 6.43 Illustration of collision J9, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 

To decrease the large difference observed in Figure 6.43, the maximum internal 
resistance of body 2 R2,max obtained from the FE analysis is used as input data for the 
2DOF model instead of the hand calculated R2,max. This is illustrated in Figure 6.44 
were it can be observed that the difference between the 2DOF and shell element 
model is much smaller than in Figure 6.43. As illustrated in Figure 6.44a, the 
maximum displacement of body 2 u2 is not so different between the 2DOF and FE 
model. This can however be a coincidence. 
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a) b) 

Figure 6.44 Illustration of the response for collision J9 with R2,max obtained from the 

FE analysis as input data, a) displacement of body 2, and b) internal 

resistance of body 1 R1. 

The overall correspondence between the 2DOF and FE models are in this section 
good when the collision impact is located in the centre of the slab. However, when the 
collision impact is not located at the centre of the slab, the correspondence is not so 
good. 

See Appendix C.6 for the corresponding response diagrams regarding collision J1-
J12. 

 

6.2.5 Discussion 

The 2DOF has an overall good correspondence compared to both of the FE models 
when body 2 has a fully elastic response, the correspondence is however better the 
closer the impact is to the centre of the slab. Whether body 1 has elastic or elasto-
plastic response, does not seem to be of high importance for the correspondence of 
body 2 between the 2DOF and FE models. However, when comparing the response of 
the displacement of body 2 u2 for collision H1 in Figure 6.9c, with u2 for collision I1 
in Figure 6.13c, the results are different. The elasto-plastic collision I1 causes a much 
smaller maximum displacement of body 2 than the elastic collision H1, i.e. there is a 
large difference if body 1 is elastic or elasto-plastic. However, it is on the safe side to 
assume an elastic behaviour of body 1, which agrees with the theory in Section 2.3.1. 

The shell element model and the beam grillage model have almost the exact same 
behaviour for an elastic response of body 2. However, when the slab is yielding in the 
FE models, the shell element model and the beam grillage model do not have the 
same behaviour at all, and it is decided that the shell element model has the better 
behaviour of the two, see Section 6.2.4.2. However, it can be discussed whether the 
shell element model produce results close to that expected in a reinforced concrete 
slab, since it does not have the expected failure mode. How to model an elasto-plastic 
reinforced concrete slab with shell elements needs to be further studied. 

The shell element model have the disadvantages that moment-curvature and torsion-
twisting relations cannot be manually implemented, and that the Poisson’s ratio is set 
to υ = 0.5 during yielding. It is also hard to have orthotropic behaviour, different 
reinforcement arrangement in different sections, and different amount of 
reinforcement in top and bottom when shell elements are used. When studying a beam 
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in Section 6.1, the beam elements have good elasto-plastic behaviour and it is first 
when the beam elements are used in a beam grillage, it starts to have problems with 
the stress distribution. 

The correspondence is not good at all if the maximum internal resistance of body 2 
R2,max differs to much between the models, which is expected. As an example, for load 
case 3, the difference between the hand calculated R2,max = 717 kN, and the 
R2,max = 608 kN obtained from FEM, is almost 20 %. Also, the correspondence 
between the models is good when the impact is located in the centre of the slab, but 
not otherwise. 

The correspondence between the 2DOF model and the shell element model for body 1 
is less good for collision J7 in Figure 6.42, than for collision tests in earlier sections. 
On the other hand, the correspondence between the two models is quite good for 
body 2 in this case. The reason for this is believed to be the difference in the load-
displacement relations illustrated in Figure 6.38a. 

It can be stated that the 2DOF model with an elasto-plastic response of body 2 can be 
improved by having more accurate ways to calculate R2,max and by having a multi-
linear k2 function so that it corresponds to the load-displacement diagram in 
Figure 6.38. It is believed that a more accurate stiffness k2 is resulting in an overall 
better correspondence between the FE and 2DOF model. 

The usage of the transformation factor țmF can also be improved, either by finding an 
approach that calculates an optimised țmF for each collision, or by having a varying 
țmF. In this section, guessed and constant values for țmF are used, but as discussed in 
Section 6.2.4.3, the behaviour of țmF is complex. 

By increasing the stiffness of body 1 k1 the duration of the collision is decreased but 
most important, the load on body 2 is increased and therefore also the displacement, 
as seen in Section 6.2.2, 6.2.3 and 6.2.4.4. This means that by choosing a stiffness 
which is larger than expected, a result which is on the safe side is obtained. This is 
also more thoroughly discussed in the precedent master’s thesis by Asplund and 
Steckmest (2014). 
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7 Final Remarks 

7.1 Conclusions 

This thesis is evaluating how the design with regard to collision impact between 
simply supported reinforced concrete members and incoming objects, can be carried 
out using both FE analysis and a 2DOF model. The studies evaluate elastic and elasto-
plastic response for both the incoming object and the resisting structure. Quadratic 
slabs are of main interest but beams are also evaluated. When slabs are evaluated, the 
2DOF model is compared to both a shell element model and a beam grillage model. 
The FE and 2DOF models have good correspondence for beams with both elastic and 
elasto-plastic behaviour and for quadratic slabs with elastic behaviour. 

If body 1 has elastic or elasto-plastic response is not of greater importance for the 
correspondence between the 2DOF and FE models for body 2. However, a body 1 
with elastic behaviour gives larger displacement in the resisting structure than a 
body 1 with elasto-plastic behaviour for the same collision, which means that an 
elastic body 1 gives results on the safe side. Also, a higher stiffness k1 of body 1 gives 
a higher displacement in the resisting structure, and therefore it is on the safe side to 
assume a higher stiffness than expected for the incoming object. 

When comparing the 2DOF and FE models the latter are seen as reference models 
because they are supposed to describe the reality better than the 2DOF model. 
However, the beam grillage model with elasto-plastic behaviour does not give the 
expected response, even though single beams modelled in the same way have the 
correct behaviour. It is therefore concluded that a shell element model better represent 
the real behaviour of an elasto-plastic reinforced concrete slab than the case using a 
beam grillage model. 

For a quadratic slab with elasto-plastic behaviour, the 2DOF and FE model shows 
good correspondence when the load is applied at the centre of the slab. One reason for 
this is the fact that the hand calculated maximum slab resistance is quite similar to that 
from the FE model in this case. However, the hand calculated resistance is not always 
on the safe side, as expected when using the strip method. 

When the impact location is not located at the centre of the slab, the hand calculated 
resistance is not similar to that achieved from the FE model. This because the failure 
modes assumed in the hand calculations, do not correspond to those obtained in the 
FE model. That is one of the reasons that there is not so good correspondence between 
the 2DOF and FE model for these cases. On the other hand, the correspondence is 
better if the resistance used in the 2DOF is based on the results from the FE analysis. 
However, if the resistance needs to be derived for each case with FE software, then 
the collision can be analysed with FE software instead of a 2DOF model. It is 
believed that the 2DOF model can be improved if a more accurate way of deriving the 
maximum slab resistance is found. 

When comparing different values for the transformation factor țmF in the 2DOF model 
with the FE model, for a quadratic slab with an elasto-plastic behaviour, there is a 
large difference. The result shows that the obtained value of țmF is lower than the 
theoretical plastic value of țmF = 1/6, which gives an underestimated value of the 
displacement of the slab. This is due to the fact that the theoretical plastic failure 
mode is different from the obtained failure mode in the FE model. 
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In addition, the analysis shows that țmF derived from collision cases is even lower 
than that derived from static cases. Since the main interest is the response during the 
collision, this phenomenon may be of great importance. The fact that țmF can have a 
lower value during collision leads to an even more underestimated value of the slab 
displacement. 

 

7.2 Further studies 

In this thesis simply supported quadratic concrete slabs are studied and with limited 
load cases. To further extend the study, other boundary conditions, different slab 
geometries and more load cases should be evaluated. 

To get improved results with the 2DOF model for slabs with elasto-plastic behaviour, 
hand calculations approaches for the load capacity that gives more accurate results 
and on the safe side need to be found. It is believed that the failure mode obtained 
from the FE model is different from the failure mode assumed in the hand 
calculations, where the yield lines goes straight from the point of loading to the 
corners of the slab. To improve the response further in the 2DOF model it is possible 
to use a multi-linear stiffness of the slab for better correspondence with the load-
displacement relation of the FE model. 

The reality of a slab with elasto-plastic behaviour is in this thesis represented by a FE 
model using shell elements. This model could be compared to physical tests or a more 
detailed FE model with concrete and reinforcement modelled separately, to verify that 
the behaviour of the model is sufficient. Also, the shell element model in this thesis is 
made in the commercial FE software ADINA, and can be verified and compared to 
models made in other FE software. 

The beam grillage model with elasto-plastic response can be further evaluated. Even 
though the beam grillage model does not have a good response in this thesis, it has a 
large theoretical advantage since manually implemented moment-curvature and 
torsion-twisting relations can be used, which gives more control of the slab behaviour 
than what is possible using the shell element model. Hence, using a beam grillage 
model, orthotropic behaviour, different reinforcement arrangement in different 
sections, and different amount of reinforcement in top and bottom can be modelled. 
Further studies of how torsion-twisting relations should be handled in a FE model of a 
slab can also be done for a beam grillage model. The beam grillage model in this 
thesis is made in the commercial FE software ADINA, and it may be possible that this 
way of modelling works different in other FE software. 

It is discovered in this thesis that the transformation factor țmF is varying when the 
slab is yielding and can decrease to a value well below the theoretical derived plastic 
value țmF = 1/6, especially for dynamic cases. Therefore, țmF needs to be derived for 
different load cases and for different slabs and if necessary, even for different 
incoming objects with altering velocities. It is of special interest to evaluate if țmF 
differ more between static and dynamic cases when the slab is large, due to local 
displacements. It could also be evaluated if it is best to use a constant or a varying 
transformation factor țmF during the 2DOF analyse. 
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 Central Difference Method Appendix A

In this appendix, the Central Difference Method presented in Section 2.7 is 
summarised step by step, based on the algorithm in Craig and Kurdila (2006). 

Table A.1 Algorithm to solve Newton’s second law of motion with the Central 
Difference Method based on Craig and Kurdila (2006). 

Step Action 

0 (0.1) Input the mass, damping and stiffness matrices M, C, K 

(0.2) Calculate the LU factorization of M 

(0.3) Input the initial conditions u0 and v0 

(0.4) Set the simulation parameters, including the time step h 

(0.5) Calculate the initial acceleration from the equations of motion 

 00
1

0 )0( KuCvfMu    

(0.6) Calculate the LU-factorization of 

hh 22

CM
  

(0.7) Calculate the starting displacement value from the equation
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1 Loop for each time step, n = 1 …, tn = t1 … 

2 Solve the displacements for the next time step 
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3 Evaluate the set of velocities and accelerations, as needed 

h

nn

n
2

11  


uu
u  

2

11 2

h

nnn

n

 


uuu
u  

4 set n = n+1 and continue to the next time step 
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 Results from 2DOF Analysis Appendix B

B.1 Elastic response without barrier 

In this section, results for collision A1-A4 are presented according to the analysis 
discussed in Section 3.2.2. 

Table B.1 Input parameters for collision A1-A4 with elastic response for the 

2DOF system. 

Case 
v0 

[m/s] 
k1 

[kN/m] 

m1 
[kg] 

m2 
[kg] 

Collision A1 27.8 100 1 500 7 500 

Collision A2 27.8 100 15 000 7 500 

Collision A3 27.8 1 000 1 500 7 500 

Collision A4 27.8 1 000 15 000 7 500 

 

a) b) 

 

c) d) 

Figure B.1 Response for collision A1 a) displacement u, b) velocity v, c) internal 

resistance R, and d) impulse I. 
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a) b) 

 

c) d) 

Figure B.2 Response for collision A2 a) displacement u, b) velocity v, c) internal 

resistance R, and d) impulse I. 
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a) b) 

 

c) d) 

Figure B.3 Response for collision A3 a) displacement u, b) velocity v, c) internal 

resistance R, and d) impulse I. 
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a) b) 

 

c) d) 

Figure B.4 Response for collision A4 a) displacement u, b) velocity v, c) internal 

resistance R, and d) impulse I. 
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a) b) 

 

c) d) 

Figure B.5 Response for collision A1-A4 a) kinetic energy Ek,tot for collision A1 and 

A3, b) kinetic energy Ek,tot for collision A2 and A4, c) internal work Wi 

for collision A1 and A3, and d) internal work Wi for collision A2 and 

A4. 

  

0

100

200

300

400

500

600

0.0 0.2 0.4 0.6 0.8 1.0

K
in

et
ic

 e
ne

rg
y,

 E
k
,t

o
t
[k

J]

Time, t [s]

Collision A1
Collision A3

0

1000

2000

3000

4000

5000

6000

0.0 0.2 0.4 0.6 0.8 1.0

K
in

et
ic

 e
ne

rg
y,

 E
k
,t

o
t
[k

J]

Time, t [s]

Collision A2
Collision A4

0

100

200

300

400

500

600

0.0 0.2 0.4 0.6 0.8 1.0

In
te

rn
al

 w
or

k,
 W

i
[k

J]

Time, t [s]

Collision A1
Collision A3

0

1000

2000

3000

4000

5000

6000

0.0 0.2 0.4 0.6 0.8 1.0

In
te

rn
al

 w
or

k,
 W

i
[k

J]

Time, t [s]

Collision A2
Collision A4



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:87 
B-6 

B.2 Plastic response without barrier 

In this section, results for collision B1-B4 are presented according to the analysis 
discussed in Section 3.2.3. 

Table B.2 Input parameters for collision B1-B4 with plastic response for the 

2DOF system. 

Case 
v0 

[m/s] 
R1,max 
[kN] 

m1 
[kg] 

m2 
[kg] 

Collision B1 27.8 250 1 500 7 500 

Collision B2 27.8 250 15 000 7 500 

Collision B3 27.8 500 1 500 7 500 

Collision B4 27.8 500 15 000 7 500 

 

a) b) 

 

c) d) 

Figure B.6 Response for collision B1 a) displacement u, b) velocity v, c) internal 

resistance R, and d) impulse I. 
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a) b) 

 

c) d) 

Figure B.7 Response for collision B2 a) displacement u, b) velocity v, c) internal 

resistance R, and d) impulse I. 
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a) b) 

 

c) d) 

Figure B.8 Response for collision B3 a) displacement u, b) velocity v, c) internal 

resistance R, and d) impulse I. 
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a) b) 

 

c) d) 

Figure B.9 Response for collision B4 a) displacement u, b) velocity v, c) internal 

resistance R, and d) impulse I. 
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a) b) 

 

c) d) 

Figure B.10 Response for collision B1-B4 a) kinetic energy Ek,tot for collision B1 and 

B3, b) kinetic energy Ek,tot for collision B2 and B4, c) internal work Wi 

for collision B1 and B3, and d) internal work Wi for collision B2 and 

B4. 
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B.3 Elasto-plastic response without barrier 

In this section, results for collision C1 and C2 are presented according to the analysis 
discussed in Section 3.2.4. 

Table B.3 Input parameters for collision C1 and C2 with elasto-plastic response 

for the 2DOF system. 

Case 
v0 

[m/s] 
R1,max 
[kN] 

k1 
[kN/m] 

m1 
[kg] 

m2 
[kg] 

Collision C1 27.8 250 100 1 500 7 500 

Collision C2 27.8 250 100 15 000 7 500 

 

a) b) 

 

c) d) 

Figure B.11 Response for collision C1 a) displacement u, b) velocity v, c) internal 

resistance R, and d) impulse I. 
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a) b) 

 

c) d) 

Figure B.12 Response for collision C2 a) displacement u, b) velocity v, c) internal 

resistance R, and d) impulse I. 

 

Figure B.13 Change in kinetic energy Ek,tot in the positive direction of body 2 during 

collision C1 and C2. 
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Figure B.14 Change in internal work Wi during collision C1 and C2. 
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B.4 Elastic response with barrier 

In this section, results for collision D1-D4 are presented according to the analysis 
discussed in Section 3.3. 

Table B.4 Input parameters for collision D1-D4 with elastic response for the 

2DOF system with initial velocity v0 = 27.8 m/s. 

 
Collision 

D1 

Collision 
D2 

Collision 
D3 

Collision 
D4 

k1 [kN/m] 100 1 000 400 4 000 

k2 [kN/m] 2 000 2 000 2 000 2 000 

m1 [kg] 1 500 15 000 1 500 15 000 

m2 [kg] 7 500 7 500 7 500 7 500 

Mass ratio m1 / m2 [-] 0.2 2 0.2 2 

Frequency ratio f1 / f2 [-] 0.5 0.5 1 1 

Load factor ȕel [-] 1.65 1.15 1.42 0.69 
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a) b) 

 

c) d) 

Figure B.15 Response for collision D1 a) displacement u, b) velocity v, c) internal 

resistance R, and d) impulse I. 

 

a) b) 

Figure B.16 Response for collision D1 a) internal work Wi,1 and kinetic energy Ek,1 

for body 1, and b) internal work Wi,2, external work We,2 and kinetic 

energy Ek for body 2. 
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a) b) 

 

c) d) 

Figure B.17 Response for collision D2 a) displacement u, b) velocity v, c) internal 

resistance R, and d) impulse I. 

 

a) b) 

Figure B.18 Response for collision D2 a) internal work Wi,1 and kinetic energy Ek,1 

for body 1, and b) internal work Wi,2, external work We,2 and kinetic 

energy Ek for body 2. 
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a) b) 

 

c) d) 

Figure B.19 Response for collision D3 a) displacement u, b) velocity v, c) internal 

resistance R, and d) impulse I. 

 

a) b) 

Figure B.20 Response for collision D3 a) internal work Wi,1 and kinetic energy Ek,1 

for body 1, and b) internal work Wi,2, external work We,2 and kinetic 

energy Ek for body 2. 
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a) b) 

 

c) d) 

Figure B.21 Response for collision D4 a) displacement u, b) velocity v, c) internal 

resistance R and dynamic load F2,el, and d) impulse I. 

 

a) b) 

Figure B.22 Response for collision D4 a) internal work Wi,1 and kinetic energy Ek,1 

for body 1, and b) internal work Wi,2, external work We,2 and kinetic 

energy Ek for body 2. 

-4

-2

0

2

4

0.0 0.1 0.2 0.3 0.4 0.5

D
is

pl
ac

em
en

t,
 u

 [
m

]

Time, t [s]

Body 1
Body 2

-30

-20

-10

0

10

20

30

0.0 0.1 0.2 0.3 0.4 0.5

V
el

oc
it

y,
 v

[m
/s

]

Time, t [s]

Body 1
Body 2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.0 0.1 0.2 0.3 0.4 0.5

Im
pu

ls
e,

 I
 [

M
N

s]

Time, t [s]

Body 1
Body 2

-6
-4
-2
0
2
4
6
8

0.0 0.1 0.2 0.3 0.4 0.5

F
or

ce
s,

 F
,

R
 [

M
N

]

Time, t [s]

R Body 1
R Body 2
F2el

0

1

2

3

4

5

6

0.0 0.1 0.2 0.3 0.4 0.5

E
ne

rg
y,

[M
J]

Time, t [s]

Wi1
Ek1

0

1

2

3

4

5

6

0.0 0.1 0.2 0.3 0.4 0.5

E
ne

rg
y,

[M
J]

Time, t [s]

Wi2
We2
Ek2



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:87 
B-19 

 

a) b) 

Figure B.23 Internal resistance of body 1 R1 for a) collision D1 and D3, and 

b) collision D2 and D4. 

 

Figure B.24 Internal resistance of body 2 R2 for collision D1-D4. 
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 2DOF and FEM Comparison Appendix C

C.1 Elastic body 1 and body 2 for a beam 

In this section, results for collision E1 are presented according to the analysis 
discussed in Section 6.1.2. 

Table C.1 2DOF input parameters for the collision E1 with an elastic response for 

both body 1 and body 2. 

Case 
α 
[-] 

țmF 

[-] 
k1 

[MN/m] 

k2 
[MN/m] 

m1 
[kg] 

Collision E1 0.5 0.486 1 506.2 1 500 

 

a) b) 

Figure C.1 Comparison between the 2DOF model and the FE model for 

collision E1, a) displacement of body 2 u2, and b) internal resistance of 

body 1 R1. 

 

  

-10

0

10

20

0.0 0.1 0.2 0.3 0.4 0.5

D
is

pl
ac

em
en

t,
 u

2
[m

m
]

Time, t [s]

2DOF

FEM

0

300

600

900

1200

0.0 0.1 0.2 0.3 0.4 0.5In
te

rn
al

 r
es

is
ta

nc
e,

 R
1

[k
N

]

Time, t [s]

2DOF

FEM



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:87 
C-2 

C.2 Elasto-plastic body 1 and elastic body 2 for a beam 

In this section, results for collision F1-F4 are presented according to the analysis 
discussed in Section 6.1.3. 

Table C.2 2DOF input parameters for collision F1-F4 with elasto-plastic 

response of body 1 and elastic response of body 2. 

Case 
α 
[-] 

țmF 

[-] 
k1 

[MN/m] 

k2 
[MN/m] 

m1 
[kg] 

R1,max 

[kN] 

Collision F1 0.5 0.486 1 506.2 1 500 500 

Collision F2 0.5 0.486 1 506.2 1 500 250 

Collision F3 0.25 0.774 1 899.8 1 500 500 

Collision F4 0.25 0.774 1 899.8 1 500 250 

 

a) b) 

 

c) d) 

Figure C.2 Illustration of the response for collision F1, a) displacement of body 1 

u1, b) internal resistance of body 1 R1, c) displacement of body 2 u2, and 

d) velocity of body 2 v2. 
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a) b) 

 

c) d) 

Figure C.3 Illustration of the response for collision F2, a) displacement of body 1 

u1, b) internal resistance of body 1 R1, c) displacement of body 2 u2, and 

d) velocity of body 2 v2. 

  

0

1

2

3

0.0 0.1 0.2 0.3 0.4 0.5

D
is

pl
ac

em
en

t,
 u

1
[m

]

Time, t [s]

2DOF
FEM

0

100

200

300

0.0 0.1 0.2 0.3 0.4 0.5In
te

rn
al

 r
es

is
ta

nc
e,

 R
1

[k
N

]

Time, t [s]

2DOF

FEM

-5

0

5

10

0.0 0.1 0.2 0.3 0.4 0.5

D
is

pl
ac

em
en

t,
 u

2
[m

m
]

Time, t [s]

2DOF
FEM

-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8

0.0 0.1 0.2 0.3 0.4 0.5

V
el

oc
it

y,
 v

2
[m

/s
]

Time, t [s]

2DOF
FEM



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:87 
C-4 

 

a) b) 

 

c) d) 

Figure C.4 Illustration of the response for collision F3, a) displacement of body 1 

u1, b) internal resistance of body 1 R1, c) displacement of body 2 u2, and 

d) velocity of body 2 v2. 
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a) b) 

 

c) d) 

Figure C.5 Illustration of the response for collision F4, a) displacement of body 1 

u1, b) internal resistance of body 1 R1, c) displacement of body 2 u2, and 

d) velocity of body 2 v2.  
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C.3 Elastic body 1 and elasto-plastic body 2 for a beam 

In this section, results for collision G1a-G1c are presented according to the analysis 
discussed in Section 6.1.4. 

Table C.3 2DOF input parameters for collision G1a-G1c with different 

transformation factor țmF and with elastic response of body 1 and 

elasto-plastic response of body 2. 

Case 
α 
[-] 

țmF 

[-] 
k1 

[MN/m] 

k2 
[MN/m] 

m1 
[kg] 

R2,max 

[MN] 

Collision G1a 0.5 0.486 1 506.2 15 000 3.1 

Collision G1b 0.5 0.41 1 506.2 15 000 3.1 

Collision G1c 0.5 0.333 1 506.2 15 000 3.1 

 

a) b) 

 

c) d) 

Figure C.6 Illustration of the response for collision G1a, a) displacement of body 1 

u1, b) internal resistance of body 1 R1, c) displacement of body 2 u2, and 

d) velocity of body 2 v2. 
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a) b) 

 

a) b) 

Figure C.7 Illustration of the response for collision G1b, a) displacement of body 1 

u1, b) internal resistance of body 1 R1, c) displacement of body 2 u2, and 

d) velocity of body 2 v2. 
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a) b) 

 

a) b) 

Figure C.8 Illustration of the response for collision G1c, a) displacement of body 1 

u1, b) internal resistance of body 1 R1, c) displacement of body 2 u2, and 

d) velocity of body 2 v2. 
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C.4 Elastic body 1 and body 2 for a slab 

In this section, results for collision H1-H12 are presented according to the analysis 
discussed in Section 6.2.2. 

Table C.4 2DOF and FE input parameters for collision H1-H12 with initial 

velocity v0 = 27.8 m/s. 

Case αx [-] αy [-] țmF [-] k1 [MN/m] m1 [kg] ksl [MN/m] 

Collision H1 0.5 0.5 0.203 0.5 1 500 10.79 

Collision H2 0.5 0.25 0.235 0.5 1 500 15.94 

Collision H3 0.25 0.25 0.241 0.5 1 500 22.02 

Collision H4 0.5 0.5 0.203 1 1 500 10.79 

Collision H5 0.5 0.25 0.235 1 1 500 15.94 

Collision H6 0.25 0.25 0.241 1 1 500 22.02 

Collision H7 0.5 0.5 0.203 0.5 15 000 10.79 

Collision H8 0.5 0.25 0.235 0.5 15 000 15.94 

Collision H9 0.25 0.25 0.241 0.5 15 000 22.02 

Collision H10 0.5 0.5 0.203 1 15 000 10.79 

Collision H11 0.5 0.25 0.235 1 15 000 15.94 

Collision H12 0.25 0.25 0.241 1 15 000 22.02 
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a) b) 

 

c) d) 

Figure C.9 Illustration of collision H1, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.10 Illustration of collision H2, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.11 Illustration of collision H3, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.12 Illustration of collision H4, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.13 Illustration of collision H5, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.14 Illustration of collision H6, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 

  

-12
-10
-8
-6
-4
-2
0
2

0.0 0.1 0.2 0.3 0.4 0.5

D
is

pl
ac

em
en

t,
 u

1
[m

]

Time, t [s]

2DOF
Grillage
Shell

0

200

400

600

800

1000

1200

0.0 0.1 0.2 0.3 0.4 0.5In
te

rn
al

 r
es

is
ta

nc
e,

 R
1

[k
N

]

Time, t [s]

2DOF
Grillage
Shell

-40

0

40

80

0.0 0.1 0.2 0.3 0.4 0.5

D
is

pl
ac

em
en

t,
 u

2
[m

m
]

Time, t [s]

2DOF
Grillage
Shell

-2

-1

0

1

2

3

4

0.0 0.1 0.2 0.3 0.4 0.5

V
el

oc
it

y,
 v

2
[m

/s
]

Time, t [s]

2DOF
Grillage
Shell



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:87 
C-16 

 

a) b) 

 

c) d) 

Figure C.15 Illustration of collision H7, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.16 Illustration of collision H8, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.17 Illustration of collision H9, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.18 Illustration of collision H10, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.19 Illustration of collision H11, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.20 Illustration of collision H12, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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C.5 Elasto-plastic body 1 and elastic body 2 for a slab 

In this section results, for collision I1-I8 are presented according to the analysis 
discussed in Section 6.2.3. 

Table C.5 2DOF and FE input parameters for collision I1-I8 with initial velocity 

v0 = 27.8 m/s. The point load is applied in the centre of the slab, i.e. 

αx = αy = 0.5, țmF = 0.203 and ksl = 10.79 MN/m. 

Case k1 [MN/m] m1 [kg] R1,max [MN] 

Collision I1 0.5 1 500 0.3 

Collision I2 0.5 1 500 0.6 

Collision I3 1 1 500 0.3 

Collision I4 1 1 500 0.6 

Collision I5 0.5 15 000 1 

Collision I6 0.5 15 000 2 

Collision I7 1 15 000 1 

Collision I8 1 15 000 2 
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a) b) 

 

c) d) 

Figure C.21 Illustration of collision I1, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.22 Illustration of collision I2, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.23 Illustration of collision I3, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 

  

-2

0

2

4

0.0 0.1 0.2 0.3 0.4 0.5

D
is

pl
ac

em
en

t,
 u

1
[m

]

Time, t [s]

2DOF
Grillage
Shell

0

50

100

150

200

250

300

0.0 0.1 0.2 0.3 0.4 0.5In
te

rn
al

 r
es

is
ta

nc
e,

 R
1

[k
N

]

Time, t [s]

2DOF
Grillage
Shell

-60
-40
-20

0
20
40
60
80

100

0.0 0.1 0.2 0.3 0.4 0.5

D
is

pl
ac

em
en

t,
 u

2
[m

m
]

Time, t [s]

2DOF
Grillage
Shell

-4

-2

0

2

4

6

0.0 0.1 0.2 0.3 0.4 0.5

V
el

oc
it

y,
 v

2
[m

/s
]

Time, t [s]

2DOF
Grillage
Shell



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:87 
C-26 

 

a) b) 

 

c) d) 

Figure C.24 Illustration of collision I4, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.25 Illustration of collision I5, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.26 Illustration of collision I6, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.27 Illustration of collision I7, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.28 Illustration of collision I8, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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C.6 Elastic body 1 and elasto-plastic body 2 for a slab 

In this section, results for collision J1-J12 are presented according to the analysis 
discussed in Section 6.2.4.4. 

Table C.6 2DOF and FE input parameters for collision J1-J12. 

Case 
αx 

[-] 
αy 

[-] 
k1 

[MN/m] 
m1 

[kg] 
v0 

[m/s] 
2DOF k2 

[MN/m] 
2DOF R2,max 

[kN] 

Collision J1 0.5 0.5 0.5 1 500 27.8 10.79 537.7 

Collision J2 0.5 0.25 0.5 1 500 27.8 15.94 537.7 

Collision J3 0.25 0.25 0.5 1 500 27.8 22.02 716.9 

Collision J4 0.5 0.5 1 1 500 27.8 10.79 537.7 

Collision J5 0.5 0.25 1 1 500 27.8 22.02 537.7 

Collision J6 0.25 0.25 1 1 500 27.8 22.02 716.9 

Collision J7 0.5 0.5 0.5 15 000 10 10.79 537.7 

Collision J8 0.5 0.25 0.5 15 000 10 15.94 537.7 

Collision J9 0.25 0.25 0.5 15 000 10 22.02 716.9 

Collision J10 0.5 0.5 1 15 000 10 10.79 537.7 

Collision J11 0.5 0.25 1 15 000 10 15.94 537.7 

Collision J12 0.25 0.25 1 15 000 10 22.02 716.9 
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a) b) 

 

c) d) 

Figure C.29 Illustration of collision J1, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 

  

-10
-8
-6
-4
-2
0
2
4

0.0 0.1 0.2 0.3 0.4 0.5

D
is

pl
ac

em
en

t,
 u

1
[m

]

Time, t [s]

Shell
2DOF kmf=0.1
2DOF kmf=0.167
2DOF kmf=0.203

0

200

400

600

800

0.0 0.1 0.2 0.3 0.4 0.5In
te

rn
al

 r
es

is
ta

nc
e,

 R
1

[k
N

]

Time, t [s]

Shell
2DOF kmf=0.1
2DOF kmf=0.167
2DOF kmf=0.203

0
100
200
300
400
500
600
700

0.0 0.1 0.2 0.3 0.4 0.5

D
is

pl
ac

em
en

t,
 u

2
[m

m
]

Time, t [s]

Shell
2DOF kmf=0.1
2DOF kmf=0.167
2DOF kmf=0.203

-5

0

5

10

15

0.0 0.1 0.2 0.3 0.4 0.5

V
el

oc
it

y,
 v

2
[m

/s
]

Time, t [s]

Shell
2DOF kmf=0.1
2DOF kmf=0.167
2DOF kmf=0.203



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:87 
C-33 

 

a) b) 

 

c) d) 

Figure C.30 Illustration of collision J2, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 

  

-12

-9

-6

-3

0

3

0.0 0.1 0.2 0.3 0.4 0.5

D
is

pl
ac

em
en

t,
 u

1
[m

]

Time, t [s]

Shell
2DOF kmf=0.1
2DOF kmf=0.167
2DOF kmf=0.235

0

200

400

600

800

0.0 0.1 0.2 0.3 0.4 0.5In
te

rn
al

 r
es

is
ta

nc
e,

 R
1

[k
N

]

Time, t [s]

Shell
2DOF kmf=0.1
2DOF kmf=0.167
2DOF kmf=0.235

0

200

400

600

0.0 0.1 0.2 0.3 0.4 0.5

D
is

pl
ac

em
en

t,
 u

2
[m

m
]

Time, t [s]

Shell
2DOF kmf=0.1
2DOF kmf=0.167
2DOF kmf=0.235

-5

0

5

10

15

0.0 0.1 0.2 0.3 0.4 0.5

V
el

oc
it

y,
 v

2
[m

/s
]

Time, t [s]

Shell
2DOF kmf=0.1
2DOF kmf=0.167
2DOF kmf=0.235



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:87 
C-34 

 

a) b) 

 

c) d) 

Figure C.31 Illustration of collision J3, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.32 Illustration of collision J4, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.33 Illustration of collision J5, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.34 Illustration of collision J6, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.35 Illustration of collision J7, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.36 Illustration of collision J8, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.37 Illustration of collision J9, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.38 Illustration of collision J10, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.39 Illustration of collision J11, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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a) b) 

 

c) d) 

Figure C.40 Illustration of collision J12, a) displacement of body 1 u1, b) internal 

resistance of body 1 R1, c) displacement of body 2 u2, and d) velocity of 

body 2 v2. 
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 Transformation Factors Appendix D

D.1 Transformation factors for beams 

In this section, transformation factors țm, țF and țmF are presented for beams 
subjected to a point load for different load cases where the system point is coinciding 
with the point of loading, by Asplund and Steckmest (2014). 

Table D.1 Transformation factors for point loads at different distances from the 

support, with the system point coinciding with the point of loading, by 

Asplund and Steckmest (2014). 

 
          

α 0.5 0.4 0.3 0.2 0.1 

Elastic response 

țm 0.486 0.518 0.642 1.011 2.803 

țF 1.000 1.000 1.000 1.000 1.000 

țmF 0.486 0.518 0.642 1.011 2.803 

Plastic response 

țm 0.333 0.333 0.333 0.333 0.333 

țF 1.000 1.000 1.000 1.000 1.000 

țmF 0.333 0.333 0.333 0.333 0.333 

 

D.2 Plastic transformation factors for slabs 

In this section, the plastic transformation factors țm, țF and țmF for a quadratic simply 
supported slab subjected to a point load are presented as a function of the 
displacement at the system point of body 2 u2 for load case 1-3 presented in 
Section 4.4.2. The system point is coinciding with the point of loading. These 
transformation factors are derived from a FE model with shell elements and are 
unique for each load case. The slab is presented in Section 6.2.1. 
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a) b) 

 

c)  

Figure D.1 Illustration of the transformation factors as a function of the 

displacement at the system point of body 2 u2 for load case 1 and a 

dynamic case based on collision J10 a) țm, b) țF, and c) țmF. 
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a) b) 

 

c)  

Figure D.2 Illustration of the transformation factors as a function of the 

displacement at the system point of body 2 u2 for load case 2 a) țm, 

b) țF, and c) țmF. 
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a) b) 

 

c)  

Figure D.3 Illustration of the transformation factors as a function of the 

displacement at the system point of body 2 u2 for load case 3 a) țm, 

b) țF, and c) țmF. 
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 Load Factor βel Appendix E

In this appendix is the relation between the load factor ȕel and the frequency ratio 
f1 / f2 presented for different values of the mass ratio m1 / m2 used in Section 3.3, by 
Johansson (2014). 

Table E.1 Values for load factor ȕel, by Johansson (2014). 

ȕel = R2 / F2,el [-] 

f1 / f2 Hard  m1 / m2 [-] 

[-] impact 0.10 0.20 0.50 1.0 1.5 2.0 3.0 5.0 10 50 100 

0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.005 1.006 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.004 1.004 

0.050 1.050 1.050 1.049 1.049 1.048 1.047 1.046 1.044 1.041 1.032 0.986 0.993 

0.100 1.100 1.099 1.099 1.098 1.095 1.093 1.091 1.086 1.076 1.048 0.874 0.925 

0.125 1.125 1.124 1.122 1.118 1.110 1.103 1.095 1.080 1.050 1.005 0.802 0.651 

0.150 1.174 1.172 1.171 1.166 1.158 1.150 1.141 1.125 1.091 1.006 0.874 0.578 

0.175 1.158 1.157 1.156 1.153 1.148 1.143 1.137 1.123 1.092 1.002 0.672 0.517 

0.200 1.083 1.084 1.085 1.087 1.090 1.091 1.091 1.086 1.066 0.981 0.615 0.461 

0.225 1.180 1.172 1.165 1.143 1.108 1.074 1.042 1.027 1.024 0.949 0.563 0.420 

0.250 1.268 1.258 1.249 1.221 1.176 1.134 1.094 1.021 0.976 0.915 0.515 0.382 

0.275 1.348 1.335 1.323 1.288 1.233 1.182 1.134 1.047 0.927 0.879 0.479 0.352 

0.300 1.418 1.403 1.389 1.347 1.281 1.220 1.164 1.063 0.899 0.843 0.447 0.324 

0.350 1.536 1.515 1.495 1.437 1.349 1.269 1.196 1.069 0.873 0.776 0.389 0.281 

0.400 1.625 1.598 1.572 1.498 1.387 1.288 1.200 1.051 0.830 0.713 0.347 0.248 

0.450 1.689 1.656 1.624 1.534 1.400 1.284 1.183 1.016 0.777 0.655 0.310 0.221 

0.500 1.732 1.693 1.655 1.549 1.395 1.264 1.152 0.971 0.722 0.602 0.281 0.200 

0.550 1.757 1.712 1.668 1.548 1.375 1.232 1.111 0.920 0.667 0.552 0.256 0.182 

0.600 1.768 1.717 1.668 1.534 1.345 1.192 1.064 0.867 0.627 0.506 0.235 0.167 

0.650 1.766 1.710 1.656 1.510 1.308 1.146 1.014 0.814 0.605 0.465 0.217 0.154 

0.700 1.755 1.693 1.635 1.478 1.266 1.098 0.964 0.763 0.583 0.429 0.202 0.143 

0.750 1.736 1.670 1.608 1.442 1.220 1.049 0.913 0.714 0.560 0.405 0.188 0.133 

0.800 1.710 1.640 1.575 1.402 1.173 0.999 0.863 0.667 0.537 0.386 0.177 0.125 

0.850 1.680 1.607 1.538 1.359 1.126 0.951 0.816 0.624 0.513 0.367 0.166 0.118 

0.900 1.646 1.570 1.499 1.315 1.078 0.903 0.770 0.583 0.489 0.349 0.157 0.111 

0.950 1.609 1.531 1.458 1.270 1.032 0.858 0.727 0.548 0.466 0.332 0.149 0.105 

1.000 1.571 1.490 1.416 1.225 0.986 0.815 0.687 0.518 0.445 0.316 0.141 0.100 

1.125 1.471 1.387 1.310 1.117 0.883 0.721 0.606 0.456 0.397 0.281 0.126 0.089 

1.250 1.373 1.288 1.211 1.020 0.797 0.648 0.543 0.408 0.358 0.253 0.113 0.080 

1.375 1.283 1.198 1.122 0.936 0.725 0.588 0.492 0.377 0.325 0.230 0.103 0.073 

1.500 1.200 1.116 1.042 0.864 0.666 0.538 0.450 0.350 0.298 0.210 0.094 0.067 
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F.1 Deformation shape for different load cases 

In this section is the deformation shapes along a line for different load cases 
illustrated for both quadratic and rectangular slabs. The line and the point of loading 
are presented in each diagram. 

 

Figure F.1 Illustration of the displacement of body 2 u2 on a quadratic slab along a 

line for the theoretical assumed model, the beam grillage and the shell 

element model. The line and the point of point loading are presented in 

the upper right hand corner. 
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Figure F.2 Illustration of the displacement of body 2 u2 on a quadratic slab along a 

line for the theoretical assumed model, the beam grillage and the shell 

element model. The line and the point of point loading are presented in 

the upper right hand corner. 

 

Figure F.3 Illustration of the displacement of body 2 u2 on a quadratic slab along a 

line for the theoretical assumed model, the beam grillage and the shell 

element model. The line and the point of point loading are presented in 

the upper right hand corner. 

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6

D
is

pl
ac

em
en

t,
 u

2
[m

]

Length, x [m]

Beam grillage
Shell
Theoretical

0.0

0.1

0.2

0.3

0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6

D
is

pl
ac

em
en

t,
 u

2
[m

]

Length, x [m]

Beam grillage
Shell
Theoretical



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:87 
F-3 

 

Figure F.4 Illustration of the displacement of body 2 u2 on a quadratic slab along a 

line for the theoretical assumed model, the beam grillage and the shell 

element model. The line and the point of point loading are presented in 

the upper right hand corner. 

 

Figure F.5 Illustration of the displacement of body 2 u2 on a quadratic slab along a 

line for the theoretical assumed model, the beam grillage and the shell 

element model. The line and the point of point loading are presented in 

the upper right hand corner. 
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Figure F.6 Illustration of the displacement of body 2 u2 on a rectangular slab 

along a line for the theoretical assumed model, the beam grillage and 

the shell element model. The line and the point of point loading are 

presented in the upper right hand corner. 

 

Figure F.7 Illustration of the displacement of body 2 u2 on a rectangular slab 

along a line for the theoretical assumed model, the beam grillage and 

the shell element model. The line and the point of point loading are 

presented in the upper right hand corner. 
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Figure F.8 Illustration of the displacement of body 2 u2 on a rectangular slab 

along a line for the theoretical assumed model, the beam grillage and 

the shell element model. The line and the point of point loading are 

presented in the upper left hand corner. 

 

Figure F.9 Illustration of the displacement of body 2 u2 on a rectangular slab 

along a line for the theoretical assumed model, the beam grillage and 

the shell element model. The line and the point of point loading are 

presented in the upper left hand corner. 
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Figure F.10 Illustration of the displacement of body 2 u2 on a rectangular slab 

along a line for the theoretical assumed model, the beam grillage and 

the shell element model. The line and the point of point loading are 

presented in the upper right hand corner. 

 

F.2 Load-displacement diagrams 

In this section are the load-displacement diagrams for load case 1-3 illustrated, which 
are discussed in Section 6.2.4.2. Additionally are two load cases for a rectangular slab 
illustrated. 
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a) b) 

 

c)  

Figure F.11 Illustration of the load-displacement response on a quadratic slab of a 

beam grillage model, a slab modelled with shell elements and the 

expected load capacity obtained from the strip method, a) load case 1, 

b) load case 2, and c) load case 3. 

 

a) b) 

Figure F.12 Illustration of the load-displacement response on a rectangular slab, 

lx = 2ly, of a beam grillage model, a slab modelled with shell elements 

and the expected load capacity obtained from the strip method, a) with 

the point load acting as described in the top right hand corner, and 

b) with the point load acting as described in the top right hand corner. 
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F.3 Plastic strain distribution for shell element model 

In this section, the plastic strain distribution diagram for various load cases on both a 
quadratic and a rectangular slab are illustrated in addition to the diagrams presented in 
Section 6.2.4.2. Purple and blue indicates that the strain is low or around the yield 
limit and red and pink indicates a very high plastic strain. 

  

 
 

No yield strain 

High yield strain 

 

a) b) 

Figure F.13 Illustration of the distribution of the plastic strain for load case 2 in 

a) x-direction, and b) y-direction. 

 

 
 

No yield strain 

High yield strain 

 

Figure F.14 Illustration of the distribution of the plastic strain in x-direction for a 

rectangular slab with side length lx = 2ly subjected to a point load in the 

centre. 

 

 
 

No yield strain 

High yield strain 

 

Figure F.15 Illustration of the distribution of the plastic strain in y-direction for a 

rectangular slab with side length lx = 2ly subjected to a point load in the 

centre. 
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 Mathcad Calculations Appendix G
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 MATLAB Algorithms Appendix H

H.1 2DOF algorithm 
%========================2DOF model============================== 

% This program simulates a collision between two bodies with or 
% without barrier using a two degree of freedom (2DOF) mass 
% spring system. The 2DOF model is made of two masses and two 
% springs connected to a fixed support and works for both 
% elastic, plastic or elasto-plastic response. 

% 

% Program written by:   Jonatan Andersson   880626 

%                       Johan Antonsson     900716 

% 

%               Date:   2015-05-05 

%================================================================ 

clear all 

close all 

clc 

%======================Input data================================ 

%Time interval: 

time_interval=0.5; %[s] 

 

%Properties of body 1: 

m1=1500; %[kg] (Mass) 

k1=1e6; %[N/m] (Stiffness, put to a very high number for an ideal 
%               plastic response of body 1) 

R1=0; %[N] (Put to zero if linear elastic analysis) 

v1=27.8; %[m/s] (Initial velocity) 

u_pl_max1=inf; %[-] (Maximum plastic displacement) 

u1=0; %[m] (Initial displacement) 

p1=0; %[N] (Initial force) 

 

%Properties of body 2: 

kappa_mf=0.203; %[-] (Transformation factor) 

m_structure=15052.8; %[kg] (Mass of resisting structure) 

k2=10.79e6; %[N/m] (Stiffness, put to zero for collision without 
%                  barrier, put to a very high number for ideal  
%                    plastic response) 

R2=0; %[N] (Put to zero if linear elastic analysis) 

v2=0; %[m/s] (Initial velocity) 

u_pl_max2=inf; %[-] (Maximum plastic displacement) 

u2=0; %[m] (Initial displacement) 

p2=0; %[N] (Initial force) 

 

%======================Initial calculations====================== 

%Time interval: 

t=linspace(0,time_interval,time_interval*1000+1); 

 

%Time step: 

h=t(2); 

 

%Relative mass of body 2: 

m2=kappa_mf*m_structure; 

 

%Maximum elastic displacement: 

u_el_max=[R1/k1; R2/k2]; 

if R1 == 0 

    u_el_max(1)=inf; 

end 

if R2 == 0 

    u_el_max(2)=inf; 

end 

 

%Initial stiffness matrix: 

K=[k1 -k1; 

   -k1 k1+k2]; 

 

%Mass matrix: 

M=[m1 0; 

   0 m2]; 

 

%Initial velocity, displacement and force vector: 

v0=[v1; v2]; 

u0=[u1; u2]; 

p0=[p1; p2]; 

 

%Predefining variables to save computational time: 

u=zeros(2,length(t)+1); 

v=zeros(2,length(t)); 

a=zeros(2,length(t)); 

Ek=zeros(2,length(t)); 

Ekpos=zeros(1,length(t)); 

Wi=zeros(2,length(t)); 

We2=zeros(1,length(t)); 

Ir=zeros(2,length(t)); 

dui=zeros(1,length(t)); 

u_pl=zeros(2,length(t)); 

R=zeros(2,length(t)); 

 

%===============Central Difference Method (CDM)================== 

%Using the Central Difference Method (CDM) to numerically 
%calculate the displacement at different times 

 

%Initial acceleration vector: 

a0=M\(p0-K*u0); 

 

%Starting displacement value: 

u_start=u0-h*v0+h^2/2*a0; 

 

%Start values for forces 

p_n=p0; 

 

%For loop to calculate displacements and other parameters at 
%different times using the CDM: 

for i=1:length(t) 

     

    %Calculate the deformation of spring 1: 

    dui(i)=u(1,i)-u(2,i); 

     



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:87 
H-2 

    %New additional plastic deformation for body 1: 

    if dui(i) > u_el_max(1) && dui(i) > max(dui(1:i-1)) 

        dui_pl_1=dui(i)-max(max(dui(1:i-1)), u_el_max(1)); 

    else 

        dui_pl_1=0; 

    end 

     

    %New additional plastic deformation for body 2 

    if u(2,i) > u_el_max(2) && u(2,i) > max(u(2,1:i-1)) 

        dui_pl_2=u(2,i)-max(max(u(2,1:i-1)), u_el_max(2)); 

    else 

        dui_pl_2=0; 

    end 

 

    %Updating the plastic deformation: 

    if i ~= 1 

        u_pl(:,i)=u_pl(:,i-1)+[dui_pl_1; dui_pl_2]; 

    end 

 

    %Calculating reaction forces for spring 1: 

    if dui(i) < 0 || u_pl(1,i) > u_pl_max1 

        R(1,i)=0; 

    else   

        R(1,i)=max(0,k1*(dui(i)-u_pl(1,i))); 

    end 

     

    %Calculating reaction forces for spring 2: 

    if u_pl(2,i) > u_pl_max2 

        R(2,i)=0; 

    else 

        R(2,i)=k2*(u(2,i)-u_pl(2,i)); 

    end 

 

    %Calculating current stiffnesses for spring 1: 

    if dui(i)==0 

        k1_cdm=k1; 

    else 

        k1_cdm=R(1,i)/dui(i); 

    end 

     

    %Calculating current stiffnesses for spring 2: 

    if u(2,i)==0 

        k2_cdm=k2; 

    else 

        k2_cdm=R(2,i)/u(2,i); 

    end 

     

    %Updating the stiffness matrix: 

    K=[k1_cdm -k1_cdm; 

       -k1_cdm k1_cdm+k2_cdm]; 

     

    %CDM equation: 

    if i ~= 1 

        u(:,i+1)=(M/h^2)\(p_n-(K-2*M/h^2)*u(:,i)-(M/h^2)*u(:,i-
1)); 

    else 

        u(:,i+1)=(M/h^2)\(p_n-(K-2*M/h^2)*u(:,i)-
(M/h^2)*u_start); 

    end   

     

    %Calculating velocity and acceleration: 

    if i~=1 

        v(:,i)=(u(:,i+1)-u(:,i-1))/(2*h); 

        a(:,i)=(u(:,i+1)-2*u(:,i)+u(:,i-1))/h^2; 

    else 

        v(:,i)=v0; 

    end 

         

    %Calculating kinetical energy for body 1 in positive 
%    direction: 

    if v(1,i) > 0 

        Ekpos(i)=m1*v(1,i)^2/2; 

    end 

     

    %Calculating internal work for body 1 and 2: 

    if i~=1 

        Wi(:,i)=Wi(:,i-1)+(R(:,i)+R(:,i-1))/2.*(u(:,i)-u(:,i-1)); 

    end 

     

    %Calculating external work from body 2 to body 1: 

    if i~=1 

        We2(i)=We2(i-1)+(R(1,i)+R(1,i-1))/2.*(u(2,i)-u(2,i-1)); 

    end 

     

    %Calculating impulse from internal resistance: 

    if i~=1 

        Ir(:,i)=Ir(:,i-1)+(R(:,i)+R(:,i-1))/2*h; 

    end 

end 

 

%Erasing the last u because it is out of the chosen time 
%interval: 

u=u(:,1:length(t)); 

 

%======================Other results============================= 

%Kinetical energy for body 1 and 2: 

Ek(1,:)=m1*v(1,:).^2/2; 

Ek(2,:)=m2*v(2,:).^2/2;    

 

%Total kinetic energy in positive direction: 

Ek_tot_positive=Ekpos+Ek(2,:); 

 

%Frequency ratio: 

freq_rat=sqrt(k1/m1)/sqrt(k2/m2); 

 

%Mass ratio: 

mass_rat=m1/m2; 

 

%Load factor beta_el: 

beta=max(R(2,:))/(v0(1)*sqrt(k1*m1)); 
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H.2 Transformation factor algorithm 
%==========================2DOF model============================ 

% This program calculates the transformation factors that makes 
% it possible to use mass-spring systems to model the behaviour 
% of a slab 

% 

% Program written by:   Jonatan Andersson   880626 

%                       Johan Antonsson     900716 

% 

%               Date:   2015-05-05 

%================================================================ 

clear all 

close all 

clc 

 

%=========================Input data============================= 

F=1e5; %[N] Applied static force 

system_node=421; %[-] The node where the load is applied 

nodes=841; %Number of nodes 

 

%======================Extracting data=========================== 

%Opening txt file with all deflections of the slab 

txtfil=fopen('u2_whole_model.txt'); 

    A=textscan(txtfil, '%s %s %s'); 

fclose(txtfil); 

 

%Making the information from the txt file to a vector 

for j = 1:length(A{3}) 

    str=A{3}{j}; 

    defl(j)=str2num(str); 

end 

 

%Extracting the deflection at the system node, u_s 

str=A{3}{system_node}; 

u_s=str2num(str) 

 

%================Calculating transformation factors============== 

%Calculating kappa_m 

k_m=sum(defl.^2)/(u_s^2*(sqrt(length(defl))-1)^2) 

 

%Calculating kappa_f for a load distributed over four elements 

k_f=(4*u_s+2*(defl(system_node-sqrt(nodes))+defl(system_node-1)+ 

defl(system_node+1)+defl(system_node+sqrt(nodes))) 

+defl(system_node-sqrt(nodes)-1)+defl(system_node-sqrt(nodes)+1) 

+defl(system_node+sqrt(nodes)-
1)+defl(system_node+sqrt(nodes)+1))/(16*u_s) 

 

%kappa_f for a point load 

%k_f=1 

 

%Calculating kappa_mf 

k_mf=k_m/k_f 

 

%Calculating the stiffness of the slab 

k_sl=F/u_s 
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 ADINA Command Files Appendix I

I.1 ADINA command file for shell element model 
**********INPUT DATA********** 

PARAMETER E '5.979E9' 

PARAMETER NU '0' 

PARAMETER YIELDSTRESS '1.68E6' 

PARAMETER YIELDSTRAIN '1' 

PARAMETER ALPA '0.231' 

PARAMETER DENSITY '2400' 

 

PARAMETER MASSNODE '842' 

PARAMETER POINTMASS '1500' 

PARAMETER VELOCITY '27.8' 

PARAMETER K '1E6' 

PARAMETER TIMESTEP '1000' 

PARAMETER STEPMAGNITUDE '0.001' 

 

PARAMETER ALPAX '0.5' 

PARAMETER ALPAY '0.5' 

PARAMETER LENGTH '5.6' 

PARAMETER THICKNESS '0.2' 

 

**********PARAMETER CALCULATIONS********** 

PARAMETER SUBDIV '$THICKNESS' 

PARAMETER LOADPOINTX '$ALPAX*$LENGTH' 

PARAMETER LOADPOINTX1 '$LOADPOINTX+$SUBDIV' 

PARAMETER LOADPOINTXMINUS1 '$LOADPOINTX-$SUBDIV' 

PARAMETER LOADPOINTY '$ALPAY*$LENGTH' 

PARAMETER LOADPOINTY1 '$LOADPOINTY+$SUBDIV' 

PARAMETER LOADPOINTYMINUS1 '$LOADPOINTY-$SUBDIV' 

PARAMETER YIELDSTRESSMOD '$YIELDSTRESS/$ALPA' 

PARAMETER MINUSK '-$K/16' 

PARAMETER K1 '$MINUSK*4' 

PARAMETER K2 '$MINUSK*2' 

PARAMETER K3 '$MINUSK' 

 

**********POINTS********** 

COORDINATES POINT SYSTEM=0 

@CLEAR 

1 0 0 0 0 

2 $LENGTH 0 0 0 

3 $LENGTH $LENGTH 0 0 

4 0 $LENGTH 0 0 

5 $LOADPOINTXMINUS1 $LOADPOINTYMINUS1 0 0 

6 $LOADPOINTX $LOADPOINTYMINUS1 0 0 

7 $LOADPOINTX1 $LOADPOINTYMINUS1 

8 $LOADPOINTX1 $LOADPOINTY 0 0 

9 $LOADPOINTX1 $LOADPOINTY1 0 0 

10 $LOADPOINTX $LOADPOINTY1 0 0 

11 $LOADPOINTXMINUS1 $LOADPOINTY1 0 0 

12 $LOADPOINTXMINUS1 $LOADPOINTY 0 0 

13 $LOADPOINTX $LOADPOINTY 0 0 

14 $LOADPOINTX $LOADPOINTY -1 0 

@ 

 

**********SURFACES********** 

SURFACE VERTEX NAME=1 P1=1 P2=2 P3=3 P4=4 

 

**********BOUNDARY CONDITIONS********** 

FIXITY NAME=HORN 

@CLEAR 

 'X-TRANSLATION' 

 'Y-TRANSLATION' 

 'Z-TRANSLATION' 

 'OVALIZATION' 

 

FIXITY NAME=HORNX 

@CLEAR 

 'Y-TRANSLATION' 

 'Z-TRANSLATION' 

 'OVALIZATION' 

 

FIXITY NAME=HORNY 

@CLEAR 

 'X-TRANSLATION' 

 'Z-TRANSLATION' 

 'OVALIZATION' 

 

FIXITY NAME=RULL 

@CLEAR 

 'Z-TRANSLATION' 

 'OVALIZATION' 

@ 

 

FIXITY NAME=SPRING 

@CLEAR 

 'X-TRANSLATION' 

 'Y-TRANSLATION' 

 'X-ROTATION' 

 'Y-ROTATION' 

 'Z-ROTATION' 

 'OVALIZATION' 

 

FIXBOUNDARY POINTS FIXITY=ALL 

1 'HORN' 

2 'HORNX' 

4 'HORNY' 

14 'SPRING' 

 

FIXBOUNDARY LINES FIXITY=ALL 

@CLEAR 

1  'RULL' 
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2  'RULL' 

3  'RULL' 

4  'RULL' 

 

**********POINT MASS********** 

MASSES POINTS 

@CLEAR 

14 0 0 $POINTMASS 0 0 0 

@ 

 

**********TIME STEP********** 

TIMESTEP NAME=DEFAULT 

@CLEAR 

$TIMESTEP $STEPMAGNITUDE 

@ 

 

**********MESHING SLAB********** 

MATERIAL PLASTIC-BILINEAR NAME=1 HARDENIN=ISOTROPIC E=$E 
NU=$NU, 

  YIELD=$YIELDSTRESSMOD EPA=$YIELDSTRAIN 
STRAINRA=0 DENSITY=$DENSITY, 

  MDESCRIP='Elastoplast' 

 

EGROUP SHELL NAME=1 DISPLACE=DEFAULT MATERIAL=1 TINT=7 
RESULTS=STRESSES STRESSRE=GLOBAL, 

         DESCRIPT='NONE' THICKNES=$THICKNESS TINT-
TYP=NEWTON-COTES  

 

SFTHICKNESS THICK-2D=VARIABLE 

@CLEAR 

1 $THICKNESS 0 0 0 0 

@ 

 

SUBDIVIDE MODEL MODE=LENGTH SIZE=$SUBDIV NDIV=1, 

         PROGRESS=GEOMETRIC MINCUR=1 

 

GSURFACE NODES=4  

@CLEAR 

1 

@ 

 

**********MESHING SPRINGS********** 

PROPERTY NONLINEAR-K NAME=1 

@CLEAR 

-1 $K3 

0 0 

1 0 

@ 

 

PROPERTYSET NAME=1 NONLINEA=YES NK=1 NM=0 NC=0 

 

PROPERTY NONLINEAR-K NAME=2 

@CLEAR 

-1 $K2 

0 0 

1 0 

@ 

 

PROPERTYSET NAME=2 NONLINEA=YES NK=2 NM=0 NC=0 

 

PROPERTY NONLINEAR-K NAME=3 

@CLEAR 

-1 $K1 

0 0 

1 0 

@ 

 

PROPERTYSET NAME=3 NONLINEA=YES NK=3 NM=0 NC=0 

 

EGROUP SPRING NAME=2 PROPERTY=1 RESULTS=STRESSES 
DESCRIPT='SPRING1' 

 

SPRING POINTS 

@CLEAR 

1 14 3 5 3 

2 14 3 7 3 

3 14 3 9 3 

4 14 3 11 3 

 

EGROUP SPRING NAME=3 PROPERTY=2 RESULTS=STRESSES 
DESCRIPT='SPRING2' 

 

SPRING POINTS 

5 14 3 6 3 

6 14 3 8 3 

7 14 3 10 3 

8 14 3 12 3 

 

EGROUP SPRING NAME=4 PROPERTY=3 RESULTS=STRESSES 
DESCRIPT='SPRING3' 

 

SPRING POINTS 

9 14 3 13 3 

@ 

 

**********APPLYING INITIAL VELOCITY********** 

INITIAL VELOCITIES SUBSTRUC=0 REUSE=1 

@CLEAR 

$MASSNODE 0 0 $VELOCITY 0 0 0 0 

@ 

 

**********MAKING IT DYNAMIC********** 

MASTER ANALYSIS=DYNAMIC-DIRECT-INTEGRATION 

 

ANALYSIS DYNAMIC-DIRECT-INTEGRATION 
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I.2 ADINA command file for beam grillage model 
*To avoid a large number of pages are the parts where points and 
*lines are assigned and meshed excluded. There is a point in each 
*intersection in the grillage and there is a line connecting each 
*point vertically and horizontally. When there is a repetition of 
*a command it is written as three dots "..." which means that the 
*points and lines in between are done in the same way. 

 

**********POINTS********** 

COORDINATES POINT SYSTEM=0 

@CLEAR  

1 0 0 0 0  

2 0.2 0 0 0  

... 

841 5.6 5.6 0 0  

842 2.8 2.8 -1 0  

@ 

 

**********LINES*********** 

LINE STRAIGHT NAME=1 P1=1 P2=2  

LINE STRAIGHT NAME=2 P1=2 P2=3  

... 

LINE STRAIGHT NAME=1623 P1=783 P2=812  

LINE STRAIGHT NAME=1624 P1=812 P2=841  

 

**BOUNDARY CONDITIONS points** 

FIXITY NAME=HORN 

@CLEAR 

 'X-TRANSLATION' 

 'Y-TRANSLATION' 

 'Z-TRANSLATION' 

 'OVALIZATION' 

@ 

 

FIXITY NAME=HORNX 

@CLEAR 

 'Y-TRANSLATION' 

 'Z-TRANSLATION' 

 'OVALIZATION' 

@ 

 

FIXITY NAME=HORNY 

@CLEAR 

 'X-TRANSLATION' 

 'Z-TRANSLATION' 

 'OVALIZATION' 

@ 

 

FIXITY NAME=RULL 

@CLEAR 

 'Z-TRANSLATION' 

 'OVALIZATION' 

@ 

 

FIXITY NAME=SPRING 

@CLEAR 

 'X-TRANSLATION' 

 'Y-TRANSLATION' 

 'X-ROTATION' 

 'Y-ROTATION' 

 'Z-ROTATION' 

 'OVALIZATION' 

@ 

 

FIXBOUNDARY POINTS FIXITY=ALL 

@CLEAR 

1 'HORN' 

29 'HORNX' 

813 'HORNY' 

842 'SPRING' 

@ 

 

**BOUNDARY CONDITIONS lines** 

*The boundary condition "Rull" is assigned to all outer lines. 

FIXBOUNDARY LINES FIXITY=ALL 

@CLEAR 

1 'RULL' 

2 'RULL' 

... 

1623 'RULL' 

1624 'RULL' 

@ 

 

**********POINT MASS********** 

MASSES POINTS 

@CLEAR 

842 0 0 1500 0 0 0 

@ 

 

**********TIME STEP********** 

TIMESTEP NAME=DEFAULT 

@CLEAR 

1000 0.001 

@ 

 

*******MOMENT-CURVATURE/TORSION-TWISTING ******* 

FORCE-STRAIN NAME=1 

@CLEAR 

-0.003 -160000 

-0.001 -160000 

0 0 

0.001 160000 

0.003 160000 

@ 

 

TWIST-MOMENT NAME=2 

@CLEAR 

-100 -2928.45 
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-0.004165 -2789 

0 0 

0.004165 2789 

100 2928.45 

@ 

 

MOMENT-TWIST NAME=2 

@CLEAR 

-1E6 2 

0 2 

1E6 2 

@ 

 

CURVATURE-MO NAME=3 

@CLEAR 

-100 -14115.15 

-0.017 -13443 

0 0 

0.017 13443 

100 14115.15 

@ 

 

MOMENT-CURVA NAME=3 

@CLEAR 

-1E6 3 

0 3 

1E6 3 

@ 

 

CURVATURE-MO NAME=4 

@CLEAR 

-100 -13991.25 

-0.019 -13325 

0 0 

0.019 13325 

100 13991.25 

@ 

 

MOMENT-CURVA NAME=4 

@CLEAR 

-1E6 4 

0 4 

1E6 4 

@ 

 

**********MESHING SLAB********** 

RIGIDITY-MOM PLASTIC-MULTILINEAR NAME=1 FORCE-AX=1 MOMENT-R=2 
MOMENT-S=3, 

MOMENT-T=4 DENSITY=1200 MASS-ARE=0.04, 

ACURVE-T=UNSYMMETRIC TCURVE-T=UNSYMMETRIC BCURVE-T=UNSYMMETRIC 

 

EGROUP BEAM NAME=1 SUBTYPE=THREE-D MATERIAL=1 RESULTS=STRESSES 
MOMENT-C=YES RIGIDITY=1 DESCRIPT='BEAM' SECTION=1 

 

GLINE GROUP=1 XO=0 YO=-1 ZO=0 

@CLEAR 

1  

2  

... 

811  

812  

@ 

 

GLINE GROUP=1 XO=1 YO=0 ZO=0 

@CLEAR 

813  

814  

... 

1623  

1624  

@ 

 

**********MESHING SPRING********** 

PROPERTY NONLINEAR-K NAME=1  

@CLEAR 

-1 -1000000 

0 0 

1 0 

@ 

 

PROPERTYSET NAME=1 K=0 M=0 C=0 NONLINEA=YES NK=1 NM=0 NC=0 

 

EGROUP SPRING NAME=2 PROPERTY=1 RESULTS=STRESSES 

 

SPRING POINTS 

@CLEAR 

1 842 3 421 3 0  'DEFAULT'  'DEFAULT' 0 0 

@ 

 

**********APPLYING INITIAL VELOCITY********** 

INITIAL VELOCITIES SUBSTRUC=0 REUSE=1 

@CLEAR 

842 0 0 27.8 0 0 0 0 

@ 

 

**********MAKING IT DYNAMIC********** 

MASTER ANALYSIS=DYNAMIC-DIRECT-INTEGRATION 

 

ANALYSIS DYNAMIC-DIRECT-INTEGRATION 

 

 


